DDformer: Dimension decomposition transformer with semi-supervised learning for underwater image enhancement

水下 变压器 维数(图论) 人工智能 计算机科学 材料科学 模式识别(心理学) 数学 地质学 工程类 电气工程 海洋学 电压 纯数学
作者
Zhi Gao,Jing Yang,Fengling Jiang,Xixiang Jiao,Kia Dashtipour,Mandar Gogate,Amir Hussain
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:297: 111977-111977 被引量:2
标识
DOI:10.1016/j.knosys.2024.111977
摘要

Vision-guided Autonomous Underwater Vehicles (AUVs) have gradually become significant tools for human exploration of the ocean. However, distorted images severely limit the visual ability, making it difficult to meet the needs of complex underwater environment perception. Fortunately, recent advancements in deep learning have led to rapid developments in underwater image enhancement. The emergence of the Transformer architecture has further enhanced the capabilities of deep learning. However, the direct application of Transformer to underwater image enhancement presents challenges in computing pixel-level global information and extracting local features. In this paper, we present a novel approach that merges dimension decomposition Transformer with semi-supervised learning for underwater image enhancement. To begin, dimension decomposition attention is proposed, which enables Transformer to compute global dependencies directly at the original scale and correct color distortions effectively. Concurrently, we employ convolutional neural networks to compensate for Transformer's limitations in extracting local features, thereby enriching details and textures. Subsequently, a multi-stage Transformer strategy is introduced to divide the network into high- and low-resolution stages for multi-scale global information extraction. It helps correct color distortions while enhancing the network's focus on regions with severe degradation. Moreover, we design a semi-supervised learning framework to reduce the reliance on paired datasets and construct a corresponding multi-scale fusion discriminator to enhance the sensitivity to input data. Experimental results demonstrate that our method outperforms state-of-the-art approaches, showcasing excellent learning and generalization capabilities on subjective perception and overall evaluation metrics. Furthermore, outstanding results highlight the significant improvements it brings to downstream visual engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助林耀辉采纳,获得10
1秒前
单薄的诗柳完成签到,获得积分20
1秒前
2秒前
cy完成签到,获得积分10
2秒前
隐形曼青应助smallsix采纳,获得10
2秒前
135完成签到,获得积分10
2秒前
2秒前
华仔应助dlm采纳,获得10
3秒前
4秒前
6秒前
傲娇大船发布了新的文献求助10
6秒前
舒心忆山完成签到,获得积分10
6秒前
大菠萝完成签到,获得积分10
7秒前
田様应助wenxian采纳,获得10
7秒前
王线性完成签到,获得积分10
7秒前
ddd完成签到,获得积分10
7秒前
诚心的尔阳完成签到,获得积分10
8秒前
8秒前
hhhhhh完成签到,获得积分10
8秒前
dghjk完成签到,获得积分10
8秒前
9秒前
大菠萝发布了新的文献求助10
10秒前
崔斯坦完成签到,获得积分10
10秒前
顾矜应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
臭臭的香菇应助科研通管家采纳,获得200
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
Mercury发布了新的文献求助30
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240268
求助须知:如何正确求助?哪些是违规求助? 2885223
关于积分的说明 8237531
捐赠科研通 2553515
什么是DOI,文献DOI怎么找? 1381706
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009