DDformer: Dimension decomposition transformer with semi-supervised learning for underwater image enhancement

水下 变压器 维数(图论) 人工智能 计算机科学 材料科学 模式识别(心理学) 数学 地质学 工程类 电气工程 海洋学 电压 纯数学
作者
Zhi Gao,Jing Yang,Fengling Jiang,Xixiang Jiao,Kia Dashtipour,Mandar Gogate,Amir Hussain
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:297: 111977-111977 被引量:2
标识
DOI:10.1016/j.knosys.2024.111977
摘要

Vision-guided Autonomous Underwater Vehicles (AUVs) have gradually become significant tools for human exploration of the ocean. However, distorted images severely limit the visual ability, making it difficult to meet the needs of complex underwater environment perception. Fortunately, recent advancements in deep learning have led to rapid developments in underwater image enhancement. The emergence of the Transformer architecture has further enhanced the capabilities of deep learning. However, the direct application of Transformer to underwater image enhancement presents challenges in computing pixel-level global information and extracting local features. In this paper, we present a novel approach that merges dimension decomposition Transformer with semi-supervised learning for underwater image enhancement. To begin, dimension decomposition attention is proposed, which enables Transformer to compute global dependencies directly at the original scale and correct color distortions effectively. Concurrently, we employ convolutional neural networks to compensate for Transformer's limitations in extracting local features, thereby enriching details and textures. Subsequently, a multi-stage Transformer strategy is introduced to divide the network into high- and low-resolution stages for multi-scale global information extraction. It helps correct color distortions while enhancing the network's focus on regions with severe degradation. Moreover, we design a semi-supervised learning framework to reduce the reliance on paired datasets and construct a corresponding multi-scale fusion discriminator to enhance the sensitivity to input data. Experimental results demonstrate that our method outperforms state-of-the-art approaches, showcasing excellent learning and generalization capabilities on subjective perception and overall evaluation metrics. Furthermore, outstanding results highlight the significant improvements it brings to downstream visual engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdh1994完成签到,获得积分0
1秒前
1秒前
云澈发布了新的文献求助10
3秒前
pure123发布了新的文献求助10
3秒前
4秒前
田様应助哈哈哈采纳,获得10
4秒前
4秒前
YMUSTC完成签到,获得积分10
4秒前
4秒前
张张发布了新的文献求助10
5秒前
上官若男应助www采纳,获得10
5秒前
5秒前
钩子89发布了新的文献求助10
7秒前
文俊杰发布了新的文献求助10
7秒前
8秒前
一颗奇异果完成签到,获得积分20
8秒前
8秒前
10秒前
10秒前
科学家发布了新的文献求助10
10秒前
欧啦啦发布了新的文献求助10
11秒前
12秒前
王王泽发布了新的文献求助10
12秒前
CAOHOU应助hu采纳,获得10
13秒前
哇卡哇卡酱完成签到,获得积分10
13秒前
甜美冥茗发布了新的文献求助10
13秒前
13秒前
gaoyayaaa发布了新的文献求助10
13秒前
ccalvintan发布了新的文献求助10
14秒前
15秒前
坦率如柏发布了新的文献求助10
15秒前
完美的妙芹完成签到,获得积分10
15秒前
15秒前
慕青应助katsuras采纳,获得10
15秒前
15秒前
16秒前
66666完成签到 ,获得积分10
18秒前
19秒前
陈莉莉完成签到,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011153
求助须知:如何正确求助?哪些是违规求助? 3550805
关于积分的说明 11306498
捐赠科研通 3285027
什么是DOI,文献DOI怎么找? 1810947
邀请新用户注册赠送积分活动 886649
科研通“疑难数据库(出版商)”最低求助积分说明 811563