Radiomics-based machine learning approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: a step towards virtual biopsy

医学 无线电技术 尿路上皮癌 组织病理学 分级(工程) 上尿路 活检 放射科 人工智能 机器学习 膀胱癌 病理 泌尿系统 癌症 计算机科学 内科学 土木工程 工程类
作者
Abdulsalam A. Alqahtani,Sourav Bhattacharjee,Abdulrahman Almopti,Chunhui Li,Ghulam Nabi
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:3
标识
DOI:10.1097/js9.0000000000001483
摘要

Objectives: Upper tract urothelial carcinoma is a rare, aggressive lesion, with early detection a key to its management. This study aimed to utilise computed tomographic urogram data to develop machine learning models for predicting tumour grading and staging in upper urothelial tract carcinoma patients and to compare these predictions with histopathological diagnosis used as reference standards. Methods: Protocol-based computed tomographic urogram data from 106 patients were obtained and visualised in 3D. Digital segmentation of the tumours was conducted by extracting textural radiomics features. They were further classified using 11 predictive models. The predicted grades and stages were compared to the histopathology of radical nephroureterectomy specimens. Results: Classifier models worked well in mining the radiomics data and delivered satisfactory predictive machine learning models. The MultiLayer Panel showed 84% sensitivity and 93% specificity while predicting upper tract urothelial carcinoma grades. The Logistic Regression model showed a sensitivity of 83% and a specificity of 76% while staging. Similarly, other classifier algorithms (e.g., Support Vector classifier) provided a highly accurate prediction while grading upper tract urothelial carcinoma compared to clinical features alone or ureteroscopic biopsy histopathology. Conclusion: Data mining tools could handle medical imaging datasets from small (<2 cm) tumours for upper tract urothelial carcinoma. The radiomics-based machine learning algorithms provide a potential tool to model tumour grading and staging with implications for clinical practice and the upgradation of current paradigms in cancer diagnostics. Clinical relevance: Machine learning based on radiomics features can predict upper tract urothelial cancer grading and staging with significant improvement over ureteroscopic histopathology. The study showcased the prowess of such emerging tools in the set objectives with implications towards virtual biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助zqq采纳,获得10
刚刚
1秒前
严yee发布了新的文献求助10
1秒前
xixi发布了新的文献求助10
2秒前
Orange应助coesite采纳,获得10
2秒前
2秒前
2秒前
章鱼发布了新的文献求助20
2秒前
华仔应助良夜采纳,获得10
3秒前
3秒前
QDUlong发布了新的文献求助10
4秒前
4秒前
4秒前
liu完成签到,获得积分10
4秒前
落落完成签到,获得积分10
5秒前
6秒前
Aegis完成签到,获得积分10
6秒前
ty完成签到,获得积分10
7秒前
stt完成签到 ,获得积分10
7秒前
PengHu发布了新的文献求助30
7秒前
allofme发布了新的文献求助10
7秒前
Naza1119发布了新的文献求助20
8秒前
悲凉的强炫完成签到,获得积分10
8秒前
8秒前
9秒前
严yee完成签到,获得积分10
9秒前
怡米李完成签到,获得积分10
9秒前
9秒前
大白不白完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Orange应助喜悦兔子采纳,获得10
10秒前
Aten发布了新的文献求助10
10秒前
wqG发布了新的文献求助10
10秒前
11秒前
pw发布了新的文献求助30
11秒前
卞卞发布了新的文献求助10
11秒前
12秒前
12秒前
LUO发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023175
求助须知:如何正确求助?哪些是违规求助? 3563272
关于积分的说明 11341846
捐赠科研通 3294815
什么是DOI,文献DOI怎么找? 1814780
邀请新用户注册赠送积分活动 889460
科研通“疑难数据库(出版商)”最低求助积分说明 812964