BiU-Net: a Dual-Branch Structure Based on Two-Stage Fusion Strategy for Biomedical Image Segmentation

计算机科学 对偶(语法数字) 人工智能 分割 图像分割 图像(数学) 网(多面体) 阶段(地层学) 融合 图像融合 模式识别(心理学) 计算机视觉 算法 数学 艺术 古生物学 语言学 哲学 几何学 文学类 生物
作者
Zhiyong Huang,Yunlan Zhao,Zhi Yu,Pinzhong Qin,Xiao Han,Mengyao Wang,Man Liu,Hans Gregersen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:252: 108235-108235 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108235
摘要

Computer-based biomedical image segmentation plays a crucial role in planning of assisted diagnostics and therapy. However, due to the variable size and irregular shape of the segmentation target, it is still a challenge to construct an effective medical image segmentation structure. Recently, hybrid architectures based on convolutional neural networks (CNNs) and transformers were proposed. However, most current backbones directly replace one or all convolutional layers with transformer blocks, regardless of the semantic gap between features. Thus, how to sufficiently and effectively eliminate the semantic gap as well as combine the global and local information is a critical challenge. To address the challenge, we propose a novel structure, called BiU-Net, which integrates CNNs and transformers with a two-stage fusion strategy. In the first fusion stage, called Single-Scale Fusion (SSF) stage, the encoding layers of the CNNs and transformers are coupled, with both having the same feature map size. The SSF stage aims to reconstruct local features based on CNNs and long-range information based on transformers in each encoding block. In the second stage, Multi-Scale Fusion (MSF), BiU-Net interacts with multi-scale features from various encoding layers to eliminate the semantic gap between deep and shallow layers. Furthermore, a Context-Aware Block (CAB) is embedded in the bottleneck to reinforce multi-scale features in the decoder. Experiments on four public datasets were conducted. On the BUSI dataset, our BiU-Net achieved 85.50% on Dice coefficient (Dice), 76.73% on intersection over union (IoU), and 97.23% on accuracy (ACC). Compared to the state-of-the-art method, BiU-Net improves Dice by 1.17%. For the Monuseg dataset, the proposed method attained the highest scores, reaching 80.27% and 67.22% for Dice and IoU. The BiU-Net achieves 95.33% and 81.22% Dice on the PH2 and DRIVE datasets. The results of our experiments showed that BiU-Net transcends existing state-of-the-art methods on four publicly available biomedical datasets. Due to the powerful multi-scale feature extraction ability, our proposed BiU-Net is a versatile medical image segmentation framework for various types of medical images. The source code is released on (https://github.com/ZYLandy/BiU-Net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乌禅发布了新的文献求助10
2秒前
3秒前
Lost发布了新的文献求助10
4秒前
4秒前
Jiang_wencai完成签到,获得积分10
5秒前
7秒前
上官若男应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
aldehyde应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得30
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
aldehyde应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
aldehyde应助科研通管家采纳,获得10
11秒前
12秒前
14秒前
奥特超曼应助科研老兵采纳,获得10
14秒前
15秒前
wdy111应助clyhg采纳,获得20
15秒前
kingwill举报ZZZ求助涉嫌违规
17秒前
司空靖琪完成签到,获得积分10
17秒前
Imp发布了新的文献求助10
18秒前
gogoyoco发布了新的文献求助10
19秒前
Owen应助懵懂的幻桃采纳,获得10
19秒前
19秒前
orixero应助祖国小红花采纳,获得10
19秒前
英姑应助ssss采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176