亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BiU-Net: a Dual-Branch Structure Based on Two-Stage Fusion Strategy for Biomedical Image Segmentation

计算机科学 对偶(语法数字) 人工智能 分割 图像分割 图像(数学) 网(多面体) 阶段(地层学) 融合 图像融合 模式识别(心理学) 计算机视觉 算法 数学 语言学 生物 几何学 文学类 哲学 艺术 古生物学
作者
Zhiyong Huang,Yunlan Zhao,Zhi Yu,Pinzhong Qin,Xiao Han,Mengyao Wang,Man Liu,Hans Gregersen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:252: 108235-108235 被引量:9
标识
DOI:10.1016/j.cmpb.2024.108235
摘要

Computer-based biomedical image segmentation plays a crucial role in planning of assisted diagnostics and therapy. However, due to the variable size and irregular shape of the segmentation target, it is still a challenge to construct an effective medical image segmentation structure. Recently, hybrid architectures based on convolutional neural networks (CNNs) and transformers were proposed. However, most current backbones directly replace one or all convolutional layers with transformer blocks, regardless of the semantic gap between features. Thus, how to sufficiently and effectively eliminate the semantic gap as well as combine the global and local information is a critical challenge. To address the challenge, we propose a novel structure, called BiU-Net, which integrates CNNs and transformers with a two-stage fusion strategy. In the first fusion stage, called Single-Scale Fusion (SSF) stage, the encoding layers of the CNNs and transformers are coupled, with both having the same feature map size. The SSF stage aims to reconstruct local features based on CNNs and long-range information based on transformers in each encoding block. In the second stage, Multi-Scale Fusion (MSF), BiU-Net interacts with multi-scale features from various encoding layers to eliminate the semantic gap between deep and shallow layers. Furthermore, a Context-Aware Block (CAB) is embedded in the bottleneck to reinforce multi-scale features in the decoder. Experiments on four public datasets were conducted. On the BUSI dataset, our BiU-Net achieved 85.50% on Dice coefficient (Dice), 76.73% on intersection over union (IoU), and 97.23% on accuracy (ACC). Compared to the state-of-the-art method, BiU-Net improves Dice by 1.17%. For the Monuseg dataset, the proposed method attained the highest scores, reaching 80.27% and 67.22% for Dice and IoU. The BiU-Net achieves 95.33% and 81.22% Dice on the PH2 and DRIVE datasets. The results of our experiments showed that BiU-Net transcends existing state-of-the-art methods on four publicly available biomedical datasets. Due to the powerful multi-scale feature extraction ability, our proposed BiU-Net is a versatile medical image segmentation framework for various types of medical images. The source code is released on (https://github.com/ZYLandy/BiU-Net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘Pdm发布了新的文献求助10
2秒前
3秒前
无花果应助Marshall采纳,获得10
10秒前
17秒前
18秒前
Marshall发布了新的文献求助10
22秒前
幸运星完成签到 ,获得积分10
24秒前
木木发布了新的文献求助10
25秒前
29秒前
甜甜纸飞机完成签到 ,获得积分10
31秒前
34秒前
甜甜的紫菜完成签到 ,获得积分10
38秒前
43秒前
安静的yu完成签到 ,获得积分10
44秒前
45秒前
JOY完成签到 ,获得积分10
48秒前
49秒前
49秒前
Yuanyuan发布了新的文献求助10
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
搜集达人应助痴情的诗槐采纳,获得10
1分钟前
2分钟前
2分钟前
乾坤侠客LW完成签到,获得积分10
2分钟前
斯文败类应助司空天德采纳,获得10
2分钟前
小汽车滴滴滴完成签到,获得积分10
3分钟前
3分钟前
CodeCraft应助zzzz采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
zzzz发布了新的文献求助10
3分钟前
3分钟前
超级碧曼应助Wei采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788741
求助须知:如何正确求助?哪些是违规求助? 5711548
关于积分的说明 15473875
捐赠科研通 4916750
什么是DOI,文献DOI怎么找? 2646551
邀请新用户注册赠送积分活动 1594225
关于科研通互助平台的介绍 1548651