亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BiU-Net: a Dual-Branch Structure Based on Two-Stage Fusion Strategy for Biomedical Image Segmentation

计算机科学 对偶(语法数字) 人工智能 分割 图像分割 图像(数学) 网(多面体) 阶段(地层学) 融合 图像融合 模式识别(心理学) 计算机视觉 算法 数学 语言学 生物 几何学 文学类 哲学 艺术 古生物学
作者
Zhiyong Huang,Yunlan Zhao,Zhi Yu,Pinzhong Qin,Xiao Han,Mengyao Wang,Man Liu,Hans Gregersen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:252: 108235-108235
标识
DOI:10.1016/j.cmpb.2024.108235
摘要

Computer-based biomedical image segmentation plays a crucial role in planning of assisted diagnostics and therapy. However, due to the variable size and irregular shape of the segmentation target, it is still a challenge to construct an effective medical image segmentation structure. Recently, hybrid architectures based on convolutional neural networks (CNNs) and transformers were proposed. However, most current backbones directly replace one or all convolutional layers with transformer blocks, regardless of the semantic gap between features. Thus, how to sufficiently and effectively eliminate the semantic gap as well as combine the global and local information is a critical challenge. To address the challenge, we propose a novel structure, called BiU-Net, which integrates CNNs and transformers with a two-stage fusion strategy. In the first fusion stage, called Single-Scale Fusion (SSF) stage, the encoding layers of the CNNs and transformers are coupled, with both having the same feature map size. The SSF stage aims to reconstruct local features based on CNNs and long-range information based on transformers in each encoding block. In the second stage, Multi-Scale Fusion (MSF), BiU-Net interacts with multi-scale features from various encoding layers to eliminate the semantic gap between deep and shallow layers. Furthermore, a Context-Aware Block (CAB) is embedded in the bottleneck to reinforce multi-scale features in the decoder. Experiments on four public datasets were conducted. On the BUSI dataset, our BiU-Net achieved 85.50% on Dice coefficient (Dice), 76.73% on intersection over union (IoU), and 97.23% on accuracy (ACC). Compared to the state-of-the-art method, BiU-Net improves Dice by 1.17%. For the Monuseg dataset, the proposed method attained the highest scores, reaching 80.27% and 67.22% for Dice and IoU. The BiU-Net achieves 95.33% and 81.22% Dice on the PH2 and DRIVE datasets. The results of our experiments showed that BiU-Net transcends existing state-of-the-art methods on four publicly available biomedical datasets. Due to the powerful multi-scale feature extraction ability, our proposed BiU-Net is a versatile medical image segmentation framework for various types of medical images. The source code is released on (https://github.com/ZYLandy/BiU-Net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
机灵的啤酒完成签到 ,获得积分10
4秒前
祖宛凝发布了新的文献求助10
8秒前
9秒前
嗜血啊阳发布了新的文献求助10
15秒前
小鱼完成签到 ,获得积分10
16秒前
祖宛凝完成签到,获得积分10
17秒前
Jasper应助嗜血啊阳采纳,获得10
21秒前
动听安筠完成签到 ,获得积分10
23秒前
姆姆没买完成签到 ,获得积分10
26秒前
舒心豪英完成签到 ,获得积分10
29秒前
清爽夜雪完成签到,获得积分10
38秒前
43秒前
marshyyy发布了新的文献求助10
48秒前
谢显龙完成签到 ,获得积分10
52秒前
58秒前
AZN完成签到 ,获得积分10
1分钟前
努力发一区完成签到 ,获得积分10
1分钟前
Chloe发布了新的文献求助10
1分钟前
tjxx发布了新的文献求助10
1分钟前
RTP完成签到 ,获得积分10
1分钟前
一个可爱的人完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
嘉心糖应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
嘉心糖完成签到,获得积分0
1分钟前
念旧完成签到 ,获得积分10
1分钟前
刘刘溜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
tjxx完成签到,获得积分10
1分钟前
小二郎应助zoloft采纳,获得10
1分钟前
orixero应助Xxxx采纳,获得10
1分钟前
淡定的半莲完成签到 ,获得积分10
1分钟前
1分钟前
zoloft发布了新的文献求助10
2分钟前
呆呆要努力完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948681
关于积分的说明 8541729
捐赠科研通 2624564
什么是DOI,文献DOI怎么找? 1436318
科研通“疑难数据库(出版商)”最低求助积分说明 665845
邀请新用户注册赠送积分活动 651792