A miRNA-disease association prediction model based on tree-path global feature extraction and fully connected artificial neural network with multi-head self-attention mechanism

计算机科学 人工智能 联想(心理学) 人工神经网络 机制(生物学) 树(集合论) 机器学习 关联规则学习 决策树模型 相似性(几何) 深度学习 特征(语言学) 数据挖掘 计算生物学 生物信息学 决策树 生物 数学 心理学 图像(数学) 数学分析 哲学 语言学 认识论 心理治疗师
作者
Hou Biyu,Mengshan Li,Yuxin Hou,Ming Zeng,Nan Wang,Lixin Guan
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12420-5
摘要

Abstract Background MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the association matrix still hasn’t been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural network with 5-fold cross-validation for model training. Results The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miRNAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy is as high as 0.9227. Conclusions The model proposed in this paper can accurately predict the miRNA-disease association, and can serve as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease genetics, among others. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助霸气的梦露采纳,获得10
1秒前
liuliuliu发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
dxwy应助的的的的的采纳,获得10
7秒前
科研通AI2S应助气泡水采纳,获得10
7秒前
9秒前
史娣给史娣的求助进行了留言
9秒前
乐乐应助liuliuliu采纳,获得10
10秒前
Nature完成签到,获得积分10
10秒前
susu发布了新的文献求助10
12秒前
14秒前
剪刀石头布完成签到,获得积分10
15秒前
重要半兰发布了新的文献求助10
15秒前
善良的冷梅完成签到,获得积分10
16秒前
Orange应助芋头粽子采纳,获得10
16秒前
Xulun完成签到,获得积分10
18秒前
19秒前
holmes完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
云隐发布了新的文献求助10
24秒前
Hello应助霸气的梦露采纳,获得10
24秒前
加菲丰丰应助holmes采纳,获得20
27秒前
芒果好高完成签到,获得积分10
27秒前
27秒前
28秒前
爆米花应助Ars采纳,获得10
28秒前
29秒前
31秒前
橙子完成签到,获得积分20
32秒前
jxy09156发布了新的文献求助10
33秒前
儒雅大象发布了新的文献求助10
33秒前
啦熊发布了新的文献求助10
33秒前
36秒前
侃侃关注了科研通微信公众号
36秒前
YUYUYU应助家湘采纳,获得30
37秒前
芋头粽子发布了新的文献求助10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393