GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 物理 量子力学
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳完成签到,获得积分10
1秒前
开朗发卡完成签到,获得积分10
1秒前
潇洒毛应助dolphin采纳,获得10
2秒前
xink完成签到,获得积分10
3秒前
狗大王完成签到,获得积分10
3秒前
美君完成签到 ,获得积分10
3秒前
啦啦啦完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
lrc完成签到,获得积分10
7秒前
maxSpr完成签到,获得积分10
9秒前
卡拉米完成签到,获得积分10
10秒前
慈祥的帽子完成签到,获得积分10
10秒前
郑小七完成签到,获得积分10
10秒前
Miller应助BLDYT采纳,获得20
10秒前
charles发布了新的文献求助10
11秒前
11秒前
Ava应助Lili采纳,获得10
12秒前
12秒前
12秒前
12秒前
开心应助Alvin采纳,获得10
12秒前
感动归尘发布了新的文献求助30
13秒前
HAPPY发布了新的文献求助10
13秒前
14秒前
14秒前
73Jennie123发布了新的文献求助10
15秒前
思源应助迷路的小牛马采纳,获得10
15秒前
Singularity应助开心的万天采纳,获得10
17秒前
elsalili完成签到,获得积分10
17秒前
19秒前
充电宝应助SH采纳,获得10
19秒前
脑袋空荡荡完成签到,获得积分20
19秒前
Puokn发布了新的文献求助10
19秒前
elsalili发布了新的文献求助10
20秒前
可靠的老鼠完成签到,获得积分10
20秒前
二十二完成签到 ,获得积分10
22秒前
小白完成签到,获得积分10
22秒前
liangliang发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655