GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 量子力学 物理
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
诚心凝旋完成签到 ,获得积分20
2秒前
坦率的匪应助王大爷采纳,获得10
2秒前
Stay发布了新的文献求助20
2秒前
冷静访梦完成签到,获得积分10
2秒前
韬奋!发布了新的文献求助10
2秒前
思源应助Deadman采纳,获得10
3秒前
wlm完成签到,获得积分10
3秒前
忍冬完成签到,获得积分10
4秒前
今后应助wwwjqw采纳,获得10
4秒前
成功应助饱满以松采纳,获得10
4秒前
烟花应助饱满以松采纳,获得10
4秒前
fishfun发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
赘婿应助开心四季度采纳,获得10
6秒前
6秒前
ddzxcz完成签到,获得积分10
6秒前
7秒前
8秒前
四氧化三铁完成签到,获得积分10
8秒前
9秒前
研友_VZG7GZ应助好运好运采纳,获得10
10秒前
深情安青应助创新采纳,获得10
10秒前
英姑应助方俊驰采纳,获得10
10秒前
虚幻青曼发布了新的文献求助10
10秒前
tip发布了新的文献求助10
10秒前
10秒前
ddzxcz发布了新的文献求助10
11秒前
PAD完成签到,获得积分10
11秒前
今后应助zl采纳,获得10
11秒前
李爱国应助高文雅采纳,获得10
11秒前
淘气科研发布了新的文献求助10
11秒前
华仔应助NiceSunnyDay采纳,获得10
12秒前
浦老四发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
充电宝应助日辰水吉采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002