GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 物理 量子力学
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助hotongue采纳,获得10
4秒前
lulu发布了新的文献求助10
4秒前
凡凡发布了新的文献求助10
5秒前
刘奇发布了新的文献求助10
8秒前
麻花发布了新的文献求助10
9秒前
科研通AI6应助lulu采纳,获得10
9秒前
科研通AI6应助lulu采纳,获得10
9秒前
米粒之珠亦放光华完成签到,获得积分10
10秒前
10秒前
风趣问蕊完成签到,获得积分10
11秒前
dwclongy完成签到,获得积分10
11秒前
斯文焱发布了新的文献求助10
12秒前
关关过应助加油通采纳,获得20
12秒前
量子星尘发布了新的文献求助10
15秒前
炙热冰蓝完成签到,获得积分10
15秒前
cicytjsxjr发布了新的文献求助10
16秒前
杨怂怂完成签到 ,获得积分10
17秒前
星辰大海应助dwclongy采纳,获得10
17秒前
宁_宁发布了新的文献求助10
18秒前
我是老大应助麻花采纳,获得10
19秒前
20秒前
kaka完成签到 ,获得积分10
21秒前
22秒前
CodeCraft应助汪宇采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
科目三应助mu采纳,获得10
24秒前
爱听歌小蚂蚁关注了科研通微信公众号
24秒前
一种信仰完成签到 ,获得积分10
24秒前
24秒前
顾矜应助淡淡的觅松采纳,获得10
25秒前
28秒前
mount完成签到,获得积分10
30秒前
斯文败类应助long采纳,获得10
31秒前
32秒前
Orange应助作业对不起采纳,获得10
33秒前
33秒前
36秒前
mu发布了新的文献求助10
37秒前
风清扬应助科研通管家采纳,获得30
38秒前
蒹葭苍苍应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896