GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 量子力学 物理
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助gqz采纳,获得10
刚刚
深情安青应助qq采纳,获得10
1秒前
gege完成签到 ,获得积分10
2秒前
2秒前
Jasper应助yyy采纳,获得10
3秒前
缓慢强炫发布了新的文献求助10
3秒前
5秒前
Hua发布了新的文献求助10
5秒前
Azure完成签到 ,获得积分10
5秒前
单纯如柏完成签到,获得积分10
6秒前
7秒前
Underoos发布了新的文献求助10
7秒前
8秒前
老实天菱完成签到,获得积分10
8秒前
kakamua完成签到 ,获得积分10
8秒前
Akim应助帕累托有效采纳,获得10
10秒前
11秒前
11秒前
月上柳梢头完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
初见完成签到,获得积分10
13秒前
qq发布了新的文献求助10
13秒前
科研狗发布了新的文献求助10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402