清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 物理 量子力学
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
Jasper应助懦弱的问芙采纳,获得10
6秒前
小烦同学完成签到,获得积分10
8秒前
披着羊皮的狼完成签到 ,获得积分10
27秒前
43秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
羊羔蓉完成签到,获得积分10
1分钟前
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
TEMPO发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
SciGPT应助lyh的老公采纳,获得10
2分钟前
喜悦向日葵完成签到 ,获得积分10
2分钟前
王0535完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
qiongqiong完成签到 ,获得积分10
4分钟前
4分钟前
随心所欲完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
TEMPO发布了新的文献求助10
4分钟前
5分钟前
银鱼在游完成签到,获得积分10
5分钟前
独特的师完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715110
求助须知:如何正确求助?哪些是违规求助? 5230494
关于积分的说明 15274024
捐赠科研通 4866165
什么是DOI,文献DOI怎么找? 2612734
邀请新用户注册赠送积分活动 1562936
关于科研通互助平台的介绍 1520260