亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 物理 量子力学
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wei发布了新的文献求助20
4秒前
激动的似狮完成签到,获得积分0
18秒前
貔貅完成签到 ,获得积分10
35秒前
1分钟前
zhangxiaoqing完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
HUI发布了新的文献求助10
3分钟前
我是老大应助xxi采纳,获得10
3分钟前
3分钟前
哈哈发布了新的文献求助30
3分钟前
3分钟前
4分钟前
热情依白发布了新的文献求助10
4分钟前
5分钟前
NFS发布了新的文献求助10
5分钟前
空儒完成签到 ,获得积分10
5分钟前
5分钟前
Ken发布了新的文献求助10
5分钟前
5分钟前
5分钟前
默默曼冬发布了新的文献求助10
5分钟前
aayy完成签到,获得积分20
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
aayy关注了科研通微信公众号
6分钟前
河狸完成签到,获得积分10
6分钟前
6分钟前
许大脚完成签到 ,获得积分10
6分钟前
7分钟前
忞航完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
NexusExplorer应助科研通管家采纳,获得10
7分钟前
隐形曼青应助momo采纳,获得30
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681665
求助须知:如何正确求助?哪些是违规求助? 5011994
关于积分的说明 15175968
捐赠科研通 4841236
什么是DOI,文献DOI怎么找? 2595015
邀请新用户注册赠送积分活动 1547983
关于科研通互助平台的介绍 1506009