GA-BP neural network-based nonlinear regression model for machining errors of compressor blades

人工神经网络 机械加工 过度拟合 非线性系统 计算机科学 工程类 人工智能 机器学习 算法 机械工程 物理 量子力学
作者
Lingsong Fan,Yubin Ren,Miaolong Tan,Baohai Wu,Limin Gao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:151: 109256-109256 被引量:1
标识
DOI:10.1016/j.ast.2024.109256
摘要

Given that blade machining errors can substantially degrade aeroengine performance and reliability, there is a critical imperative to implement stringent control over blade machining errors during the manufacturing process. Nevertheless, the prevailing complexity surrounding the numerous machining error types and their obfuscated interrelationships impedes the comprehensive control of blade profile errors. Consequently, unveiling the nonlinear relationships between the distinct machining errors represents a task of paramount importance. To uncover these nonlinear relationships, this work pioneers the application of factor analysis and Genetic Algorithm-optimized BP neural networks to enable nonlinear regression for diverse blade machining errors. Specifically, this paper first constructs an orthogonal factor analysis model to reduce the dimensionality of complex, high-dimensional blade machining error data and extract underlying correlations. This analysis reveals three distinct error groups, each dominated by a latent common factor. Building on these factor analysis outputs, GA-BP neural networks are then leveraged to perform nonlinear regression for intra-group errors. Guided by the Maximal Information Coefficients (MIC) between different errors, we identify control error types within each group to serve as network inputs, with other errors designated as outputs. To prevent overfitting and accelerate convergence of the neural network, Monte Carlo method is used to augment the limited raw error dataset. The augmented data trains the GA-BP network, establishing multivariate nonlinear models with control errors as independent variables and other errors as dependent variables. The model accuracy is validated by a separate validation set. The comparisons between the predicted and true values in the validation set reveal that the relative errors are around 5%, indicating that the models achieve an accuracy of approximately 95%. These results demonstrate the satisfactory performance of the established models. Overall, this work elucidates previously unclear relationships between distinct blade machining errors. These new insights establish the foundation for comprehensive error control and will directly benefit blade design, manufacturing, and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北堂完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
威武的翠安完成签到 ,获得积分10
5秒前
王来敏完成签到,获得积分10
7秒前
Sunsky发布了新的文献求助20
7秒前
心随风飞发布了新的文献求助20
10秒前
12秒前
12秒前
Akim应助Laura采纳,获得10
13秒前
摇槐米发布了新的文献求助10
14秒前
15秒前
lll6xz发布了新的文献求助10
15秒前
完美世界完成签到,获得积分10
15秒前
小谷发布了新的文献求助10
16秒前
21秒前
21秒前
香蕉觅云应助金闪闪采纳,获得10
21秒前
25秒前
25秒前
小谷完成签到,获得积分10
26秒前
成就仇天完成签到 ,获得积分10
29秒前
霸气的惜寒完成签到,获得积分10
30秒前
30秒前
小可完成签到 ,获得积分10
30秒前
30秒前
啦啦啦关注了科研通微信公众号
33秒前
友好诗霜完成签到 ,获得积分10
34秒前
上官若男应助优秀跳跳糖采纳,获得10
34秒前
Hello应助DAJI采纳,获得10
36秒前
逸风望完成签到,获得积分10
36秒前
顺利的小伙完成签到 ,获得积分10
36秒前
yunxi发布了新的文献求助10
37秒前
酷波er应助Jana采纳,获得10
38秒前
39秒前
CipherSage应助摇槐米采纳,获得10
40秒前
虚幻的电灯胆完成签到,获得积分10
43秒前
yunxi完成签到,获得积分10
50秒前
53秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084205
求助须知:如何正确求助?哪些是违规求助? 2737236
关于积分的说明 7544149
捐赠科研通 2386784
什么是DOI,文献DOI怎么找? 1265552
科研通“疑难数据库(出版商)”最低求助积分说明 613127
版权声明 598187