摩擦系数
材料科学
摩擦系数
机械工程
冶金
工程制图
法律工程学
工程类
复合材料
作者
Zhenshun Li,Jiaqi Li,Ben An,Rui Li
出处
期刊:Industrial Lubrication and Tribology
[Emerald (MCB UP)]
日期:2024-05-06
标识
DOI:10.1108/ilt-01-2024-0009
摘要
Purpose This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations. Design/methodology/approach Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results. Findings The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters. Originality/value This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI