Adaptable reservoir computing: A paradigm for model-free data-driven prediction of critical transitions in nonlinear dynamical systems

非线性系统 非线性动力系统 油藏计算 计算机科学 动力系统理论 复杂系统 统计物理学 人工智能 人工神经网络 物理 循环神经网络 量子力学
作者
Shirin Panahi,Ying–Cheng Lai
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (5) 被引量:9
标识
DOI:10.1063/5.0200898
摘要

A problem in nonlinear and complex dynamical systems with broad applications is forecasting the occurrence of a critical transition based solely on data without knowledge about the system equations. When such a transition leads to system collapse, as often is the case, all the available data are from the pre-critical regime where the system still functions normally, making the prediction problem challenging. In recent years, a machine-learning based approach tailored to solving this difficult prediction problem, adaptable reservoir computing, has been articulated. This Perspective introduces the basics of this machine-learning scheme and describes representative results. The general setting is that the system dynamics live on a normal attractor with oscillatory dynamics at the present time and, as a bifurcation parameter changes into the future, a critical transition can occur after which the system switches to a completely different attractor, signifying system collapse. To predict a critical transition, it is essential that the reservoir computer not only learns the dynamical "climate" of the system of interest at some specific parameter value but, more importantly, discovers how the system dynamics changes with the bifurcation parameter. It is demonstrated that this capability can be endowed into the machine through a training process with time series from a small number of distinct, pre-critical parameter values, thereby enabling accurate and reliable prediction of the catastrophic critical transition. Three applications are presented: predicting crisis, forecasting amplitude death, and creating digital twins of nonlinear dynamical systems. Limitations and future perspectives are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助付晓龙采纳,获得30
1秒前
1秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
上官若男应助Ruby采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
caicai应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得200
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小机灵发布了新的文献求助10
3秒前
淡定幻儿发布了新的文献求助10
3秒前
3秒前
21完成签到 ,获得积分10
4秒前
5秒前
Jasper应助kk采纳,获得10
6秒前
快乐战神没烦恼完成签到,获得积分10
7秒前
7秒前
8秒前
mengyijie完成签到,获得积分20
9秒前
11发布了新的文献求助10
11秒前
13秒前
dxs发布了新的文献求助10
14秒前
酷波er应助凶狠的幻丝采纳,获得10
14秒前
婕哥发布了新的文献求助10
14秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714504
求助须知:如何正确求助?哪些是违规求助? 3261863
关于积分的说明 9921197
捐赠科研通 2975631
什么是DOI,文献DOI怎么找? 1631705
邀请新用户注册赠送积分活动 774142
科研通“疑难数据库(出版商)”最低求助积分说明 744697