#1621 Quantifying ureter smooth muscle electrophysiology from calcium transient images to understand abnormal peristaltic contraction

蠕动 收缩(语法) 输尿管 电生理学 平滑肌 肌肉收缩 瞬态(计算机编程) 解剖 化学 生物物理学 内科学 生物 医学 计算机科学 泌尿科 操作系统
作者
Chitaranjan Mahapatra,Ashish Pradhan
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:39 (Supplement_1)
标识
DOI:10.1093/ndt/gfae069.222
摘要

Abstract Background and Aims Abnormal peristaltic contraction of the ureter smooth muscle (USM) causes acute kidney stone episodes. Intracellular electrical activities like membrane depolarization and action potentials play important roles in modulating the USM contraction by releasing intracellular calcium from the sarcoplasmic reticulum. Therefore, an electrophysiological study will help to assess the USM cell's electrical activities and in diagnosing abnormal USM contraction. The objective of this study is to quantify the contribution of ionic currents in shaping experimental calcium transient profiles using in-silico electrophysiological modeling. Method The simultaneous experimental recording of action potential (AP) and intracellular calcium transient images from the mouse ureter is obtained. The single isolated USM cell model comprises several voltage-gated ion channels, such as two voltage-gated calcium (T—type, and L—type) channels, one voltage-gated fast potassium (KA) channel, one calcium-dependent large conductance potassium channel, and an HCN channel. To describe the calcium-dependent gating of Ca2+-dependent potassium channels and to update the equilibrium potential of the Ca2+ ion, the intracellular Ca2+ concentration is updated during the simulation period. Results Simulation of simultaneous recordings of AP and cytosolic calcium [Ca2+]i are done on a single isolated cell. The model shows [Ca2+]i as a function of synaptic input-induced AP to simulate extracted experimental data, where Ca2+ transient is recorded simultaneously during AP in mouse USM cells. Fig. 1 shows both experimental and simulation of AP (A) and Calcium transient (B) in the USM cell. In our model, the radius “r” and time constant τ of the shell influence the Ca2+ transient profile. In the USM cell model, the submembrane calcium transient occurs from a depth of 0.1 μm to a depth of 0.6 μm. We have investigated whether Ca2+ current via the L-type Ca2+ channel is responsible for the firing of APs with fast upstroke generation. The AP and calcium transients are demolished with the absence of the L-type Ca2+ channel. Conclusion From this study, it is found that inhibition of the L-type Ca2+ channel not only prevented AP generation, it also reduced the cytosolic Ca2+ transient. This study supports the application of L-type Ca2+ channel inhibitor as a potential drug for abnormal peristaltic contraction of the ureter smooth muscle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌萌完成签到,获得积分10
3秒前
3秒前
liumu完成签到 ,获得积分10
3秒前
胸大让熊二要有个熊样完成签到 ,获得积分20
3秒前
微笑的井完成签到 ,获得积分10
7秒前
9秒前
张瑞雪完成签到 ,获得积分10
11秒前
Leoniko完成签到,获得积分10
12秒前
科研铁人完成签到,获得积分10
14秒前
meijuan1210完成签到 ,获得积分10
14秒前
JAMA兜里揣完成签到,获得积分10
15秒前
TTT完成签到,获得积分10
18秒前
阿冬呐完成签到,获得积分10
18秒前
完美的紫南完成签到,获得积分10
19秒前
爱静静应助Accepted采纳,获得10
19秒前
香蕉凤凰发布了新的文献求助10
19秒前
20秒前
辅助成灾发布了新的文献求助10
21秒前
21秒前
talent关注了科研通微信公众号
22秒前
孙长胜完成签到,获得积分10
22秒前
拾柒完成签到,获得积分10
25秒前
WizBLue完成签到,获得积分10
26秒前
下酒菜发布了新的文献求助10
26秒前
小杨发布了新的文献求助10
27秒前
王大炮完成签到 ,获得积分10
28秒前
QYR完成签到,获得积分10
30秒前
爱笑完成签到,获得积分10
30秒前
CGBY完成签到 ,获得积分10
33秒前
34秒前
游01完成签到 ,获得积分10
34秒前
语嘘嘘完成签到,获得积分10
38秒前
啊呜发布了新的文献求助10
38秒前
儒雅沛凝完成签到 ,获得积分10
38秒前
814791097完成签到,获得积分10
38秒前
tangsenlin完成签到,获得积分10
38秒前
39秒前
mathmotive完成签到,获得积分10
39秒前
39秒前
Tingshan完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784551
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011