#1621 Quantifying ureter smooth muscle electrophysiology from calcium transient images to understand abnormal peristaltic contraction

蠕动 收缩(语法) 输尿管 电生理学 平滑肌 肌肉收缩 瞬态(计算机编程) 解剖 化学 生物物理学 内科学 生物 医学 计算机科学 泌尿科 操作系统
作者
Chitaranjan Mahapatra,Ashish Pradhan
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:39 (Supplement_1)
标识
DOI:10.1093/ndt/gfae069.222
摘要

Abstract Background and Aims Abnormal peristaltic contraction of the ureter smooth muscle (USM) causes acute kidney stone episodes. Intracellular electrical activities like membrane depolarization and action potentials play important roles in modulating the USM contraction by releasing intracellular calcium from the sarcoplasmic reticulum. Therefore, an electrophysiological study will help to assess the USM cell's electrical activities and in diagnosing abnormal USM contraction. The objective of this study is to quantify the contribution of ionic currents in shaping experimental calcium transient profiles using in-silico electrophysiological modeling. Method The simultaneous experimental recording of action potential (AP) and intracellular calcium transient images from the mouse ureter is obtained. The single isolated USM cell model comprises several voltage-gated ion channels, such as two voltage-gated calcium (T—type, and L—type) channels, one voltage-gated fast potassium (KA) channel, one calcium-dependent large conductance potassium channel, and an HCN channel. To describe the calcium-dependent gating of Ca2+-dependent potassium channels and to update the equilibrium potential of the Ca2+ ion, the intracellular Ca2+ concentration is updated during the simulation period. Results Simulation of simultaneous recordings of AP and cytosolic calcium [Ca2+]i are done on a single isolated cell. The model shows [Ca2+]i as a function of synaptic input-induced AP to simulate extracted experimental data, where Ca2+ transient is recorded simultaneously during AP in mouse USM cells. Fig. 1 shows both experimental and simulation of AP (A) and Calcium transient (B) in the USM cell. In our model, the radius “r” and time constant τ of the shell influence the Ca2+ transient profile. In the USM cell model, the submembrane calcium transient occurs from a depth of 0.1 μm to a depth of 0.6 μm. We have investigated whether Ca2+ current via the L-type Ca2+ channel is responsible for the firing of APs with fast upstroke generation. The AP and calcium transients are demolished with the absence of the L-type Ca2+ channel. Conclusion From this study, it is found that inhibition of the L-type Ca2+ channel not only prevented AP generation, it also reduced the cytosolic Ca2+ transient. This study supports the application of L-type Ca2+ channel inhibitor as a potential drug for abnormal peristaltic contraction of the ureter smooth muscle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wuzhizhiya完成签到,获得积分10
1秒前
2秒前
rudjs发布了新的文献求助10
2秒前
5秒前
Ava应助何糖采纳,获得10
5秒前
桐桐应助美丽的芷烟采纳,获得10
5秒前
野子完成签到,获得积分10
6秒前
情怀应助小D采纳,获得30
7秒前
yuan发布了新的文献求助10
7秒前
berry发布了新的文献求助10
8秒前
8秒前
淡淡采白发布了新的文献求助10
9秒前
思源应助勤恳慕蕊采纳,获得10
9秒前
知犯何逆完成签到 ,获得积分10
10秒前
啊哈完成签到,获得积分10
10秒前
11秒前
11秒前
Draven完成签到 ,获得积分10
11秒前
tmpstlml发布了新的文献求助10
12秒前
张红梨完成签到,获得积分10
12秒前
迷迷完成签到,获得积分20
13秒前
13秒前
科研通AI2S应助chen采纳,获得10
14秒前
穿山甲坐飞机完成签到 ,获得积分10
14秒前
15秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
15秒前
科研通AI5应助经年采纳,获得10
15秒前
15秒前
勤劳晓亦应助木头人采纳,获得10
16秒前
科研通AI5应助想瘦的海豹采纳,获得10
16秒前
17秒前
科研通AI5应助adazbd采纳,获得10
17秒前
bkagyin应助皮皮桂采纳,获得10
17秒前
18秒前
重要的哈密瓜完成签到 ,获得积分10
18秒前
会飞的云完成签到 ,获得积分10
19秒前
19秒前
毕不了业的凡阿哥完成签到,获得积分10
19秒前
野子发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808