#1621 Quantifying ureter smooth muscle electrophysiology from calcium transient images to understand abnormal peristaltic contraction

蠕动 收缩(语法) 输尿管 电生理学 平滑肌 肌肉收缩 瞬态(计算机编程) 解剖 化学 生物物理学 内科学 生物 医学 计算机科学 泌尿科 操作系统
作者
Chitaranjan Mahapatra,Ashish Pradhan
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:39 (Supplement_1)
标识
DOI:10.1093/ndt/gfae069.222
摘要

Abstract Background and Aims Abnormal peristaltic contraction of the ureter smooth muscle (USM) causes acute kidney stone episodes. Intracellular electrical activities like membrane depolarization and action potentials play important roles in modulating the USM contraction by releasing intracellular calcium from the sarcoplasmic reticulum. Therefore, an electrophysiological study will help to assess the USM cell's electrical activities and in diagnosing abnormal USM contraction. The objective of this study is to quantify the contribution of ionic currents in shaping experimental calcium transient profiles using in-silico electrophysiological modeling. Method The simultaneous experimental recording of action potential (AP) and intracellular calcium transient images from the mouse ureter is obtained. The single isolated USM cell model comprises several voltage-gated ion channels, such as two voltage-gated calcium (T—type, and L—type) channels, one voltage-gated fast potassium (KA) channel, one calcium-dependent large conductance potassium channel, and an HCN channel. To describe the calcium-dependent gating of Ca2+-dependent potassium channels and to update the equilibrium potential of the Ca2+ ion, the intracellular Ca2+ concentration is updated during the simulation period. Results Simulation of simultaneous recordings of AP and cytosolic calcium [Ca2+]i are done on a single isolated cell. The model shows [Ca2+]i as a function of synaptic input-induced AP to simulate extracted experimental data, where Ca2+ transient is recorded simultaneously during AP in mouse USM cells. Fig. 1 shows both experimental and simulation of AP (A) and Calcium transient (B) in the USM cell. In our model, the radius “r” and time constant τ of the shell influence the Ca2+ transient profile. In the USM cell model, the submembrane calcium transient occurs from a depth of 0.1 μm to a depth of 0.6 μm. We have investigated whether Ca2+ current via the L-type Ca2+ channel is responsible for the firing of APs with fast upstroke generation. The AP and calcium transients are demolished with the absence of the L-type Ca2+ channel. Conclusion From this study, it is found that inhibition of the L-type Ca2+ channel not only prevented AP generation, it also reduced the cytosolic Ca2+ transient. This study supports the application of L-type Ca2+ channel inhibitor as a potential drug for abnormal peristaltic contraction of the ureter smooth muscle.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
wanci应助科研通管家采纳,获得10
刚刚
Ky_Mac应助科研通管家采纳,获得30
刚刚
kingwill应助科研通管家采纳,获得20
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
Ky_Mac应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
蜀安应助科研通管家采纳,获得30
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
小郭子应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
chen应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
小郭子应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
小郭子应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
吴溪月发布了新的文献求助10
3秒前
轨迹应助白山茶采纳,获得30
3秒前
一灯大师发布了新的文献求助10
3秒前
戴院士发布了新的文献求助10
4秒前
1234完成签到 ,获得积分10
5秒前
不知完成签到,获得积分10
5秒前
忧郁平蝶完成签到,获得积分10
6秒前
牛哥发布了新的文献求助10
7秒前
陈寯发布了新的文献求助50
7秒前
Lampe应助yan采纳,获得30
7秒前
犹豫怀寒完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861