Heterogeneous Coupling Relationship Based Similarity Measure for Mixed Data

范畴变量 相似性(几何) 聚类分析 度量(数据仓库) 相似性度量 数据挖掘 计算机科学 欧几里德距离 代表(政治) 特征(语言学) 模式识别(心理学) 人工智能 数学 机器学习 语言学 哲学 政治 政治学 法学 图像(数学)
作者
Yanqing Ye,Bin Lin,Penafei Yang,Weilong Yang,Wen Zhang,Xiaomin Zhu
标识
DOI:10.1109/bigdia56350.2022.9874058
摘要

Mixed data is a typical heterogeneous structured feature of the complex system elements, which contains both categorical and continuous attributes. To effectively analyze the similarity of mixed data, taking into consideration the heterogeneous coupling relationship between the mixed attributes, this work proposes a heterogeneous coupling relationship-based similarity measure for mixed data (HMS). First, through automatic discretization based on K-means, continuous attributes are converted into categorical attributes and the categorical data view is extracted, for which the HGS method is used to measure the similarity. Besides, through similarity representation, the categorical attributes are converted into continuous attributes, then the continuous data view is constructed and its similarity measure is performed by Euclidean distance. Furthermore, the harmonic mean of the similarity between both views is calculated to obtain the integrated similarity. Finally, the effectiveness and feasibility of the HMS method are verified in clustering experiments. Compared with other common-used mixed data similarity measures, the HMS method can more fully capture the categorical and continuous views of mixed-type attributes of the complex system elements, as well as the complex heterogeneous relationships existing between views and inside the view, which as a result greatly improves the clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llxka完成签到,获得积分10
1秒前
1秒前
含泪的微笑完成签到,获得积分10
1秒前
2秒前
田様应助整齐凌萱采纳,获得10
2秒前
Antares完成签到,获得积分10
3秒前
踏实天空应助dm采纳,获得10
4秒前
4秒前
8秒前
9秒前
加油发布了新的文献求助10
9秒前
科研通AI2S应助SwapExisting采纳,获得10
9秒前
10秒前
10秒前
刻苦的元菱完成签到,获得积分10
12秒前
默默纲发布了新的文献求助30
14秒前
维拉帕米发布了新的文献求助10
14秒前
整齐凌萱发布了新的文献求助10
14秒前
白白完成签到,获得积分10
15秒前
笨笨西牛完成签到 ,获得积分10
15秒前
帅哥吴克完成签到,获得积分10
17秒前
17秒前
脑洞疼应助芋圆波波采纳,获得10
18秒前
19秒前
思源应助Sygganggang采纳,获得10
21秒前
123发布了新的文献求助10
21秒前
21秒前
KoitoYuu完成签到,获得积分10
24秒前
25秒前
hdh发布了新的文献求助20
25秒前
v111完成签到,获得积分10
27秒前
27秒前
27秒前
28秒前
28秒前
科研通AI2S应助shawn采纳,获得10
28秒前
Lucas应助葭月十七采纳,获得10
28秒前
29秒前
yy发布了新的文献求助10
29秒前
Sygganggang发布了新的文献求助10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079