Liang Qi,Yanfei Zhang,Melike Babucci,Cailing Chen,Peng Lü,Jingwei Li,Chaochao Dun,Adam S. Hoffman,Jeffrey J. Urban,Michael Tsapatsis,Simon R. Bare,Yu Han,Bruce C. Gates,Alexis T. Bell
Propene and 1,3-butadiene are important building-block chemicals that can be produced by dehydrogenation of propane and butane on Pt catalysts. A challenge is to develop highly active and selective catalysts that are resistant to deactivation by Pt sintering and coke formation. We have recently shown (Qi , J. Am. Chem. Soc. 2021, 143, 21364−21378) that these objectives can be met for propane dehydrogenation (PDH) using atomically dispersed Pt anchored to neighboring ≡SiOZn-OH groups bonded to the framework of dealuminated zeolite BEA. In the present study, we demonstrate that significantly superior performance can be achieved using self-pillared pentasil (SPP) zeolite nanosheets as supports. Following catalyst reduction in H2, atomic resolution, scanning transmission electron microscopy (STEM), and X-ray absorption spectroscopy (XAS) indicate that Pt is stabilized in structures well approximated as (≡Si-O-Zn)4-5Pt. These species are highly active, selective, and stable for PDH to give propene and for n-butane dehydrogenation (BDH) to give 1,3-butadiene. No catalyst deactivation was observed after 12 days of time on stream, and the selectivity remained at nearly 100% for PDH conducted at 823 K and a weight hourly space velocity (WHSV) of 1350 h–1. The apparent rate coefficient for PDH on this catalyst is significantly higher than that reported previously for Pt-containing catalysts. For BDH at 823 K and a WHSV of 3560 h–1, the selectivity to butene isomers and 1,3-butadiene is 98.9%, and the selectivity to 1,3-butadiene is 45%. We propose that the high catalyst stability observed during PDH and BDH is a consequence of a large fraction of the Pt-containing centers being located on the external surface of the zeolite nanosheets, where nascent coke precursors can desorb before condensing to form coke.