Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review

妊娠期糖尿病 预测建模 机器学习 怀孕 计算机科学 预测能力 人工智能 鉴定(生物学) 糖尿病 医学 生物信息学 妊娠期 内分泌学 生物 遗传学 植物 认识论 哲学
作者
Daniela Mennickent,Andrés Rodrı́guez,Marcelo Farías,Juan Araya,Enrique Guzmán‐Gutiérrez
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:132: 102378-102378 被引量:24
标识
DOI:10.1016/j.artmed.2022.102378
摘要

Gestational Diabetes Mellitus (GDM) is a hyperglycemia state that impairs maternal and offspring health, short and long-term. It is usually diagnosed at 24–28 weeks of pregnancy (WP), but at that time the fetal phenotype is already altered. Machine learning (ML)-based models have emerged as an auspicious alternative to predict this pathology earlier, however, they must be validated in different populations before their implementation in routine clinical practice. This review aims to give an overview of the ML-based models that have been proposed to predict GDM before 24–28 WP, with special emphasis on their current validation state and predictive performance. Articles were searched in PubMed. Manuscripts written in English and published before January 1, 2022, were considered. 109 original research studies were selected, and categorized according to the type of variables that their models involved: medical, i.e. clinical and/or biochemical parameters; alternative, i.e. metabolites, peptides or proteins, micro-ribonucleic acid molecules, microbiota genera, or other variables that did not fit into the first category; or mixed, i.e. both medical and alternative data. Only 8.3 % of the reviewed models have had validation in independent studies, with low or moderate performance for GDM prediction. In contrast, several models that lack of independent validation have shown a very high predictive power. The evaluation of these promising models in future independent validation studies would allow to assess their performance on different populations, and continue their way towards clinical implementation. Once settled, ML-based models would help to predict GDM earlier, initiate its treatment timely and prevent its negative consequences on maternal and offspring health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvsehx发布了新的文献求助10
刚刚
刚刚
阿枫发布了新的文献求助10
刚刚
刚刚
jiujiuhuang发布了新的文献求助10
1秒前
希望天下0贩的0应助星星采纳,获得10
1秒前
鸣鸣完成签到,获得积分10
2秒前
3秒前
嘻哈发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助冰冰采纳,获得10
4秒前
5秒前
从容芮应助lvsehx采纳,获得10
6秒前
高贵碧凡发布了新的文献求助10
7秒前
超帅的西牛完成签到 ,获得积分10
7秒前
十三发布了新的文献求助20
7秒前
学术小天才完成签到 ,获得积分10
7秒前
英勇的红酒完成签到 ,获得积分10
9秒前
包容的葵阴完成签到,获得积分10
10秒前
油菜籽完成签到 ,获得积分10
10秒前
yjc完成签到 ,获得积分10
10秒前
长情凝丹发布了新的文献求助10
11秒前
Onlyyou发布了新的文献求助10
11秒前
嘻哈完成签到,获得积分20
14秒前
14秒前
夕晴完成签到,获得积分10
15秒前
SciGPT应助doubles采纳,获得30
16秒前
斯文败类应助呆萌的太阳采纳,获得10
18秒前
充电宝应助酷酷珠采纳,获得10
19秒前
星星发布了新的文献求助10
19秒前
SciGPT应助科研通管家采纳,获得10
20秒前
爱静静应助科研通管家采纳,获得10
20秒前
爱静静应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得20
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310659
求助须知:如何正确求助?哪些是违规求助? 2943412
关于积分的说明 8515067
捐赠科研通 2618777
什么是DOI,文献DOI怎么找? 1431401
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643