亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time anomaly detection on time series of industrial furnaces: A comparison of autoencoder architectures

自编码 异常检测 计算机科学 超参数 人工智能 单变量 异常(物理) 时间序列 故障检测与隔离 深度学习 多元统计 数据挖掘 模式识别(心理学) 机器学习 物理 凝聚态物理 执行机构
作者
Marco Pota,Giuseppe De Pietro,Massimo Esposito
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:124: 106597-106597 被引量:12
标识
DOI:10.1016/j.engappai.2023.106597
摘要

Anomaly detection in industrial environments aims at detecting anomalies in the monitoring data of industrial machinery or equipment, as soon as possible, preferably presenting real-time alarms, to alert the monitoring staff and start maintenance activities timely. In this paper, the problem of anomaly detection of an industrial furnace is tackled, for the real-time recognition of punctual anomalies on multivariate time series. To this aim, a real-time anomaly detection approach is proposed: first, time series acquired from the real machinery are filtered, to select those of interest for possible anomalies, and pre-processed, to obtain sliding windows for real-time detection, then distinct univariate models are applied, to identify different anomaly types. For the application considered here, data regarding the machinery behaviour were available only for normal functioning, thus an unsupervised approach is chosen. In particular, deep learning models based on autoencoders are used to detect punctual anomalies, by reconstructing each window and evaluating the reconstruction error of its last point. An extensive set of autoencoder models is proposed, with varying architecture in terms of type of model (vanilla/variational autoencoders), type of layers (fully connected/LSTM/BiLSTM), and hyperparameters (number of layers, intermediate sizes, BiLSTM type). Available data are split, and used to train the models, and to test them on the normal signal and on synthetic anomalies injected on it, which are of particular interest and were designed according to domain experts. Performances of the proposed models show differences among them, depending on the model architecture. The most efficient models, in terms of F1 score of detection and number of parameters, are identified by their t-test comparison, and the capability of detecting anomalies online is demonstrated. In particular, the proposed anomaly detection approach, including a selected autoencoder with LSTM layers, is able to correctly recognize normal trends, with very few false positives, and promptly give alarms as different anomalous trends appear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aiiLuX完成签到 ,获得积分10
1秒前
外向白开水完成签到 ,获得积分10
2秒前
可夫司机完成签到 ,获得积分10
9秒前
zx完成签到 ,获得积分20
11秒前
寒塘完成签到,获得积分10
12秒前
秋毫发布了新的文献求助30
13秒前
13秒前
天道酬勤完成签到 ,获得积分10
14秒前
Duhz发布了新的文献求助10
19秒前
XIAODI应助秋毫采纳,获得10
26秒前
Rw完成签到 ,获得积分10
29秒前
SciGPT应助科研通管家采纳,获得10
37秒前
杳鸢应助科研通管家采纳,获得10
37秒前
完美世界应助科研通管家采纳,获得10
37秒前
杳鸢应助科研通管家采纳,获得10
37秒前
打打应助天天都在干饭采纳,获得10
45秒前
搜集达人应助刘斌采纳,获得10
46秒前
46秒前
47秒前
暮桉完成签到,获得积分10
49秒前
52秒前
1分钟前
Duhz完成签到,获得积分10
1分钟前
破晓发布了新的文献求助10
1分钟前
1分钟前
小久小力完成签到,获得积分10
1分钟前
华仔应助LX采纳,获得10
1分钟前
破晓完成签到,获得积分10
1分钟前
隐形曼青应助999采纳,获得10
1分钟前
llls完成签到 ,获得积分10
1分钟前
英俊的铭应助Shanks采纳,获得10
1分钟前
1分钟前
999完成签到 ,获得积分10
1分钟前
依蓝灵空完成签到,获得积分10
1分钟前
zw完成签到 ,获得积分10
1分钟前
重要的炳完成签到 ,获得积分10
1分钟前
1分钟前
暮桉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3175737
求助须知:如何正确求助?哪些是违规求助? 2826631
关于积分的说明 7958127
捐赠科研通 2487459
什么是DOI,文献DOI怎么找? 1325954
科研通“疑难数据库(出版商)”最低求助积分说明 634662
版权声明 602757