亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time anomaly detection on time series of industrial furnaces: A comparison of autoencoder architectures

自编码 异常检测 计算机科学 超参数 人工智能 单变量 异常(物理) 时间序列 故障检测与隔离 深度学习 多元统计 数据挖掘 模式识别(心理学) 机器学习 物理 凝聚态物理 执行机构
作者
Marco Pota,Giuseppe De Pietro,Massimo Esposito
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:124: 106597-106597 被引量:20
标识
DOI:10.1016/j.engappai.2023.106597
摘要

Anomaly detection in industrial environments aims at detecting anomalies in the monitoring data of industrial machinery or equipment, as soon as possible, preferably presenting real-time alarms, to alert the monitoring staff and start maintenance activities timely. In this paper, the problem of anomaly detection of an industrial furnace is tackled, for the real-time recognition of punctual anomalies on multivariate time series. To this aim, a real-time anomaly detection approach is proposed: first, time series acquired from the real machinery are filtered, to select those of interest for possible anomalies, and pre-processed, to obtain sliding windows for real-time detection, then distinct univariate models are applied, to identify different anomaly types. For the application considered here, data regarding the machinery behaviour were available only for normal functioning, thus an unsupervised approach is chosen. In particular, deep learning models based on autoencoders are used to detect punctual anomalies, by reconstructing each window and evaluating the reconstruction error of its last point. An extensive set of autoencoder models is proposed, with varying architecture in terms of type of model (vanilla/variational autoencoders), type of layers (fully connected/LSTM/BiLSTM), and hyperparameters (number of layers, intermediate sizes, BiLSTM type). Available data are split, and used to train the models, and to test them on the normal signal and on synthetic anomalies injected on it, which are of particular interest and were designed according to domain experts. Performances of the proposed models show differences among them, depending on the model architecture. The most efficient models, in terms of F1 score of detection and number of parameters, are identified by their t-test comparison, and the capability of detecting anomalies online is demonstrated. In particular, the proposed anomaly detection approach, including a selected autoencoder with LSTM layers, is able to correctly recognize normal trends, with very few false positives, and promptly give alarms as different anomalous trends appear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满尔蓝完成签到,获得积分10
16秒前
23秒前
29秒前
有趣的银发布了新的文献求助10
29秒前
念辰关注了科研通微信公众号
36秒前
36秒前
阿芙乐尔发布了新的文献求助10
42秒前
yiban完成签到 ,获得积分10
1分钟前
1分钟前
zyj发布了新的文献求助10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助zyj采纳,获得10
1分钟前
uto完成签到,获得积分10
1分钟前
1分钟前
vicky发布了新的文献求助10
2分钟前
懒洋洋发布了新的文献求助10
2分钟前
2分钟前
耶风完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
气945完成签到,获得积分10
2分钟前
靓丽的魔镜完成签到,获得积分10
2分钟前
丘比特应助气945采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
思源应助气945采纳,获得10
3分钟前
3分钟前
ppl发布了新的文献求助30
3分钟前
李爱国应助我能读懂文献采纳,获得10
3分钟前
ppl完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223