Real-time anomaly detection on time series of industrial furnaces: A comparison of autoencoder architectures

自编码 异常检测 计算机科学 超参数 人工智能 单变量 异常(物理) 时间序列 故障检测与隔离 深度学习 多元统计 数据挖掘 模式识别(心理学) 机器学习 物理 执行机构 凝聚态物理
作者
Marco Pota,Giuseppe De Pietro,Massimo Esposito
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:124: 106597-106597 被引量:20
标识
DOI:10.1016/j.engappai.2023.106597
摘要

Anomaly detection in industrial environments aims at detecting anomalies in the monitoring data of industrial machinery or equipment, as soon as possible, preferably presenting real-time alarms, to alert the monitoring staff and start maintenance activities timely. In this paper, the problem of anomaly detection of an industrial furnace is tackled, for the real-time recognition of punctual anomalies on multivariate time series. To this aim, a real-time anomaly detection approach is proposed: first, time series acquired from the real machinery are filtered, to select those of interest for possible anomalies, and pre-processed, to obtain sliding windows for real-time detection, then distinct univariate models are applied, to identify different anomaly types. For the application considered here, data regarding the machinery behaviour were available only for normal functioning, thus an unsupervised approach is chosen. In particular, deep learning models based on autoencoders are used to detect punctual anomalies, by reconstructing each window and evaluating the reconstruction error of its last point. An extensive set of autoencoder models is proposed, with varying architecture in terms of type of model (vanilla/variational autoencoders), type of layers (fully connected/LSTM/BiLSTM), and hyperparameters (number of layers, intermediate sizes, BiLSTM type). Available data are split, and used to train the models, and to test them on the normal signal and on synthetic anomalies injected on it, which are of particular interest and were designed according to domain experts. Performances of the proposed models show differences among them, depending on the model architecture. The most efficient models, in terms of F1 score of detection and number of parameters, are identified by their t-test comparison, and the capability of detecting anomalies online is demonstrated. In particular, the proposed anomaly detection approach, including a selected autoencoder with LSTM layers, is able to correctly recognize normal trends, with very few false positives, and promptly give alarms as different anomalous trends appear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dicpaccn发布了新的文献求助10
刚刚
Jin_Xin完成签到,获得积分10
1秒前
18完成签到,获得积分10
1秒前
科目三应助安静的晓夏采纳,获得10
1秒前
WW完成签到 ,获得积分10
1秒前
猪猪hero应助一起顺遂采纳,获得10
1秒前
shine发布了新的文献求助10
2秒前
2秒前
Hzz完成签到,获得积分10
2秒前
Lucas应助危机的硬币采纳,获得10
3秒前
开心之王发布了新的文献求助10
3秒前
华仔应助调皮的涵易采纳,获得10
3秒前
hjjjjj1发布了新的文献求助10
3秒前
为SCI奋斗完成签到,获得积分20
3秒前
nienie完成签到,获得积分20
5秒前
深情安青应助马康辉采纳,获得10
5秒前
5秒前
认真初之发布了新的文献求助10
5秒前
上官若男应助友好傲白采纳,获得10
6秒前
yx_cheng应助开心之王采纳,获得20
7秒前
swing发布了新的文献求助10
8秒前
Sepsp完成签到,获得积分10
8秒前
崔梦楠完成签到 ,获得积分10
9秒前
9秒前
EX完成签到 ,获得积分10
10秒前
10秒前
11秒前
慕青应助典雅的俊驰采纳,获得10
11秒前
Orange应助不忘初心采纳,获得10
12秒前
14秒前
yoyo完成签到,获得积分10
14秒前
tomorrow发布了新的文献求助10
16秒前
为SCI奋斗发布了新的文献求助10
16秒前
潘潘发布了新的文献求助10
17秒前
从不内卷发布了新的文献求助10
17秒前
czh应助a成采纳,获得10
17秒前
程南完成签到,获得积分10
19秒前
李健的小迷弟应助swing采纳,获得10
19秒前
ICU最靓的崽完成签到,获得积分10
21秒前
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144