Dynamic Job Shop Scheduling in an Industrial Assembly Environment Using Various Reinforcement Learning Techniques

强化学习 作业车间调度 计算机科学 调度(生产过程) 波动性(金融) 分布式计算 工业工程 数学优化 人工智能 工程类 嵌入式系统 数学 布线(电子设计自动化) 计量经济学
作者
David Heik,Fouad Bahrpeyma,Dirk Reichelt
出处
期刊:Lecture notes in networks and systems 卷期号:: 523-533 被引量:2
标识
DOI:10.1007/978-3-031-35501-1_52
摘要

The high volatility and dynamics within global value networks have recently led to a noticeable shortening of product and technology cycles. To realize an effective and efficient production, a dynamic regulation system is required. Currently, this is mostly accomplished statically via a Manufacturing Execution System, which decides for whole lots, and usually cannot react to uncertainties such as the failure of an operation, the variations in operation times or in the quality of the raw material. In this paper, we incorporated Reinforcement Learning to minimize makespan in the assembly line of our Industrial IoT Test Bed (at HTW Dresden), in the presence of multiple machines supporting the same operations as well as uncertain operation times. While multiple machines supporting the same operations improves the system’s reliability, they pose a challenging scheduling challenge. Additionally, uncertainty in operation times adds complexity to planning, which is largely neglected in traditional scheduling approaches. As a means of optimizing the scheduling problem under these conditions, we have implemented and compared four reinforcement learning methods including Deep-Q Networks, REINFORCE, Advantage Actor Critic and Proximal Policy Optimization. According to our results, PPO achieved greater accuracy and convergence speed than the other approaches, while minimizing the total makespan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王哈哈完成签到,获得积分20
刚刚
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
quhayley应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SHAO应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
March应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
fd163c应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
quhayley应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
5秒前
陈曦发布了新的文献求助10
5秒前
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
Atan完成签到,获得积分10
6秒前
Kevin发布了新的文献求助10
6秒前
6秒前
6秒前
有点灰发布了新的文献求助30
7秒前
WP发布了新的文献求助10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021