A Novel Method to Predict Sales Price of Domestic Vehicles using News Sentiment Analysis with Random Forest Algorithm

朴素贝叶斯分类器 随机森林 计算机科学 机器学习 人工智能 支持向量机 决策树 贝叶斯分类器 Bayes错误率 统计分类 分类器(UML) 数据挖掘
作者
KrishnaS Kumar,Muthupandian Saravanan,R Surendran
标识
DOI:10.1109/icaaic56838.2023.10141389
摘要

A highly scalable computer environment nowadays makes it possible to perform a variety of tasks involving data-intensive machine learning and natural language processing. One of these is the sales price prediction of home autos with recent concerns that many data scientists have looked at. In this research, the in-memory computing platform Apache Spark-which implements Naive Bayes, Novel Random Forest, Decision Tree, Support Vector Machines, and Logistic Regression are some of the classifiers that the authors examine. This study compares the classification accuracy of several classifiers based on the size of training data sets and the number of n-grams. Tests analyzed quick Amazonl product reviews. Techniques and resources: With 102 samples, the Random Forest Classifier was used on a dataset of 2943 stock sentiment scores. New Random Forest classifiers have been presented and developed as an alternative to Naive Bayes classifiers as a framework for stock market prediction. The classifiers' accuracy was assessed and noted. The Findings and Discussion: The Naive Bayes classifier produces 87% in predicting the future stock share prices on the data set used, whereas the Random forest classifier predicts the same at the rate of 92%. The Random Forest and the Naive Bayes have statistically significant differences from one other (p<0.003). The classification accuracy of the suggested model may be analyzed from the computational analysis results, and it appears that Novel Random Forest is more accurate than Naive Bayes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的手机完成签到,获得积分10
刚刚
程瀚砚发布了新的文献求助10
刚刚
1秒前
桐桐应助否认冶游史采纳,获得10
1秒前
wanghao婷完成签到,获得积分20
1秒前
2秒前
Tumbleweed668完成签到,获得积分10
2秒前
孙泉发布了新的文献求助10
2秒前
3秒前
周周发布了新的文献求助10
3秒前
prozac发布了新的文献求助10
3秒前
4秒前
卡布奇诺i完成签到,获得积分10
4秒前
Orange应助王楠采纳,获得10
4秒前
FashionBoy应助程瀚砚采纳,获得10
5秒前
Akim应助涛涛采纳,获得10
6秒前
6秒前
阳光的静白完成签到,获得积分10
7秒前
SYLH应助xiangxiang采纳,获得10
7秒前
念头发布了新的文献求助10
8秒前
Chang发布了新的文献求助10
8秒前
9秒前
fffffff发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
丘比特应助凝心采纳,获得10
11秒前
传奇3应助yangmingyu采纳,获得10
11秒前
好大一只饼饼完成签到,获得积分10
12秒前
DVD完成签到 ,获得积分10
13秒前
14秒前
飓风卡塔琳娜完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
Lucas应助1Yer6采纳,获得10
15秒前
在水一方应助Sandy采纳,获得10
15秒前
17秒前
涛涛发布了新的文献求助10
18秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444043
求助须知:如何正确求助?哪些是违规求助? 3040031
关于积分的说明 8979942
捐赠科研通 2728708
什么是DOI,文献DOI怎么找? 1496621
科研通“疑难数据库(出版商)”最低求助积分说明 691791
邀请新用户注册赠送积分活动 689375