A Novel Method to Predict Sales Price of Domestic Vehicles using News Sentiment Analysis with Random Forest Algorithm

朴素贝叶斯分类器 随机森林 计算机科学 机器学习 人工智能 支持向量机 决策树 贝叶斯分类器 Bayes错误率 统计分类 分类器(UML) 数据挖掘
作者
KrishnaS Kumar,Muthupandian Saravanan,R Surendran
标识
DOI:10.1109/icaaic56838.2023.10141389
摘要

A highly scalable computer environment nowadays makes it possible to perform a variety of tasks involving data-intensive machine learning and natural language processing. One of these is the sales price prediction of home autos with recent concerns that many data scientists have looked at. In this research, the in-memory computing platform Apache Spark-which implements Naive Bayes, Novel Random Forest, Decision Tree, Support Vector Machines, and Logistic Regression are some of the classifiers that the authors examine. This study compares the classification accuracy of several classifiers based on the size of training data sets and the number of n-grams. Tests analyzed quick Amazonl product reviews. Techniques and resources: With 102 samples, the Random Forest Classifier was used on a dataset of 2943 stock sentiment scores. New Random Forest classifiers have been presented and developed as an alternative to Naive Bayes classifiers as a framework for stock market prediction. The classifiers' accuracy was assessed and noted. The Findings and Discussion: The Naive Bayes classifier produces 87% in predicting the future stock share prices on the data set used, whereas the Random forest classifier predicts the same at the rate of 92%. The Random Forest and the Naive Bayes have statistically significant differences from one other (p<0.003). The classification accuracy of the suggested model may be analyzed from the computational analysis results, and it appears that Novel Random Forest is more accurate than Naive Bayes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的念蕾完成签到,获得积分10
2秒前
蛙蛙完成签到 ,获得积分10
4秒前
8秒前
清爽的柜子完成签到,获得积分10
9秒前
浮云完成签到,获得积分10
11秒前
充电宝应助闪闪的屁股采纳,获得10
11秒前
yueoho发布了新的文献求助10
12秒前
小个完成签到,获得积分10
12秒前
若尘应助选择性哑巴采纳,获得10
13秒前
14秒前
ash发布了新的文献求助10
14秒前
含蓄垣完成签到,获得积分10
14秒前
wrh完成签到,获得积分10
15秒前
刻苦海豚发布了新的文献求助10
15秒前
Gauss应助一一采纳,获得30
16秒前
我一进来就看到常威在打来福完成签到,获得积分10
16秒前
谷粱紫槐发布了新的文献求助10
19秒前
ru123456发布了新的文献求助10
20秒前
键盘车神完成签到 ,获得积分10
21秒前
21秒前
赘婿应助hhp采纳,获得10
21秒前
听话的代芙完成签到 ,获得积分10
22秒前
脑洞疼应助含蓄垣采纳,获得10
22秒前
23秒前
T_MC郭完成签到,获得积分10
23秒前
26秒前
26秒前
26秒前
听话的代芙关注了科研通微信公众号
27秒前
yueoho完成签到,获得积分10
28秒前
28秒前
CodeCraft应助谷粱紫槐采纳,获得10
29秒前
29秒前
xxx发布了新的文献求助10
29秒前
北遇发布了新的文献求助10
31秒前
31秒前
一一完成签到,获得积分10
34秒前
Khaleel发布了新的文献求助10
34秒前
慕青应助KINDMAGIC采纳,获得10
34秒前
小李发布了新的文献求助10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478