Cation Co-Intercalation with Anions: The Origin of Low Capacities of Graphite Cathodes in Multivalent Electrolytes

插层(化学) 石墨 电解质 化学 无机化学 阴极 离子 电极 有机化学 物理化学
作者
Yuanyuan Yang,Jinzhi Wang,Xiaofan Du,Hongzhu Jiang,Aobing Du,Xuesong Ge,Na Li,Hao Wang,Yuchen Zhang,Zheng Chen,Jingwen Zhao,Guanglei Cui
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (22): 12093-12104 被引量:10
标识
DOI:10.1021/jacs.3c01555
摘要

Dual-ion batteries involving anion intercalation into graphite cathodes represent promising battery technologies for low-cost and high-power energy storage. However, the fundamental origins regarding much lower capacities of graphite cathodes in earth abundant and inexpensive multivalent electrolytes than in Li-ion electrolytes remain elusive. Herein, we reveal that the limited anion-storage capacity of a graphite cathode in multivalent electrolytes is rooted in the abnormal multivalent-cation co-intercalation with anions in the form of large-sized anionic complexes. This cation co-intercalation behavior persists throughout the stage evolution of graphite intercalation compounds and leads to a significant decrease of sites practically viable for capacity contribution inside graphite galleries. Further systematic studies illustrate that the phenomenon of cation co-intercalation into graphite is closely related to the high energy penalty of interfacial anion desolvation due to the strong cation-anion association prevalent in multivalent electrolytes. Leveraging this understanding, we verify that promoting ionic dissociation in multivalent electrolytes by employing high-permittivity and oxidation-tolerant co-solvents is effective in suppressing multivalent-cation co-intercalation and thus achieving increased capacity of graphite cathodes. For instance, introducing adiponitrile as a co-solvent to a Mg2+-based carbonate electrolyte leads to 83% less Mg2+ co-intercalation and a ∼29.5% increase in delivered capacity of the graphite cathode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
sw98318完成签到,获得积分10
3秒前
impala完成签到,获得积分10
3秒前
3秒前
欣喜访旋发布了新的文献求助10
3秒前
朱江涛完成签到 ,获得积分10
4秒前
角鸮完成签到,获得积分10
4秒前
zly完成签到 ,获得积分10
5秒前
雨霧雲完成签到,获得积分10
5秒前
qnqqq完成签到 ,获得积分10
6秒前
健壮的涑发布了新的文献求助10
6秒前
7秒前
7秒前
秋山伊夫完成签到,获得积分10
7秒前
入门的橙橙完成签到 ,获得积分10
7秒前
BONBON发布了新的文献求助10
8秒前
10秒前
TOM完成签到,获得积分10
10秒前
隐形曼青应助欣喜访旋采纳,获得10
11秒前
852应助Millie采纳,获得10
11秒前
龍Ryu完成签到,获得积分10
12秒前
内向凌兰发布了新的文献求助10
13秒前
伍秋望完成签到,获得积分10
13秒前
14秒前
15秒前
跳跃发布了新的文献求助10
16秒前
持卿应助宗磬采纳,获得20
16秒前
16秒前
花生油炒花生米完成签到 ,获得积分10
16秒前
Riki完成签到,获得积分10
18秒前
虚幻白玉发布了新的文献求助10
18秒前
德行天下完成签到,获得积分10
18秒前
Jenny应助lan采纳,获得10
19秒前
fztnh完成签到,获得积分10
19秒前
上官若男应助lyz666采纳,获得10
19秒前
顾念完成签到 ,获得积分10
19秒前
277发布了新的文献求助10
20秒前
小二郎应助GCD采纳,获得10
21秒前
hhhhhh完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808