MCE-Net: polyp segmentation with multiple branch series-parallel attention and channel interaction via edge distribution guidance

分割 计算机科学 频道(广播) 人工智能 模式识别(心理学) 核(代数) 块(置换群论) GSM演进的增强数据速率 边界(拓扑) 噪音(视频) 图像分割 卷积(计算机科学) 计算机视觉 图像(数学) 数学 人工神经网络 计算机网络 数学分析 几何学 组合数学
作者
Haiyan Li,Lei Yang,Jiarong Miao,Pengfei Yu,Fuhua Ge
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (13): 135003-135003 被引量:1
标识
DOI:10.1088/1361-6560/acda0d
摘要

Objective.Accurate polyp segmentation is vital for diagnosing colorectal cancer. However, it is still challenging for accurate polyp segmentation and several bottlenecks exist, such as incomplete boundary, localization bias and lack of micro blocks along with large fragmented boundaries in uncertain regions.Approach.To address the above issues, a novel polyp segmentation network with multiple branch series-parallel attention (MBSA) and channel interaction via edge distribution guidance is proposed. Initially, the edge distribution guidance strategy is proposed to generate the edge distribution following Cauchy distribution to capture complementary edges with sufficient details. Subsequently, a MBSA module is put forward to extract features from various receptive fields to pinpoint tiny polyps by a multiple kernel dilated convolution block, while combining semantics of different dimensions to filter out noise and refining the details of micro target. Ultimately, the channel interaction model is proposed to improve the segmentation accuracy of the polyps in uncertain area by splitting channels into groups and conducts group-wise interaction to excavate subtle clues contained in different channels.Main results.Extensive experimental results demonstrate that the proposed method is superior over the state-of-the-art methods with the mean dice of 0.8972, 0.9420, 0.8312, 0.8064 and 0.9214 on five public polyp datasets.Significance.The proposed method improves the integrity of the margins and internal details for polyp segmentation, which will provide a powerful aid for doctors to achieve accurate judgments, reducing the likelihood of colorectal cancer and improving the survival chances of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助彼黍离离采纳,获得10
1秒前
晓湫发布了新的文献求助10
2秒前
bobo完成签到,获得积分10
2秒前
风为裳完成签到,获得积分10
2秒前
cc完成签到,获得积分10
3秒前
粗犷的沛容应助舟舟采纳,获得50
4秒前
4秒前
充电宝应助王雯雯采纳,获得10
5秒前
布洛芬发布了新的文献求助10
5秒前
科研小王发布了新的文献求助30
5秒前
6秒前
luckily完成签到,获得积分20
7秒前
迷城完成签到,获得积分10
7秒前
7秒前
星辰大海应助YanK采纳,获得10
8秒前
8秒前
英姑应助晓湫采纳,获得10
9秒前
luckily发布了新的文献求助10
9秒前
zyp完成签到,获得积分20
9秒前
swat完成签到,获得积分10
10秒前
慕青应助孙小雨采纳,获得10
11秒前
华仔应助壮观的擎采纳,获得10
11秒前
12秒前
12秒前
斯文白白发布了新的文献求助10
12秒前
13秒前
KM比比发布了新的文献求助10
13秒前
swat发布了新的文献求助10
13秒前
彭于晏应助完美的流沙采纳,获得10
13秒前
钙离子发布了新的文献求助10
14秒前
所所应助斜对角的苍白采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
卫卫完成签到 ,获得积分10
16秒前
迷城关注了科研通微信公众号
16秒前
17秒前
17秒前
葡萄蛋糕完成签到 ,获得积分10
17秒前
外向的嫣然应助芊芊采纳,获得10
18秒前
王雯雯发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959614
求助须知:如何正确求助?哪些是违规求助? 3505862
关于积分的说明 11126541
捐赠科研通 3237790
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871688
科研通“疑难数据库(出版商)”最低求助积分说明 802963