Sequential Active Contour Based on Morphological-Driven Thresholding for Ultrasound Image Segmentation of Ascites

穿刺 阈值 腹水 活动轮廓模型 人工智能 分割 计算机科学 计算机视觉 图像分割 超声波 放射科 模式识别(心理学) 医学 图像(数学) 外科
作者
Amirhossein Fallahdizcheh,Sandeep Laroia,Chao Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4305-4316 被引量:4
标识
DOI:10.1109/jbhi.2023.3286869
摘要

Paracentesis is a high-demanding and routine operation, which has great potentials and benefits if semi-autonomous procedures can be developed. One of the most important techniques that facilitate semi-autonomous paracentesis is to segment the ascites from ultrasound images accurately and efficiently. The ascites, however, is usually with significantly different shapes and noise among different patients, and its shape/size changes dynamically during the paracentesis. This makes most of existing image segmentation methods either time consuming or inaccurate for segmenting ascites from its background. In this article, we propose a two-stage active contour method to facilitate accurate and efficient segmentation of ascites. First, a morphological-driven thresholding method is developed to locate the initial contour of the ascites automatically. Then, the identified initial contour is fed into a novel sequential active contour algorithm to segment the ascites from background accurately. The proposed method is tested and compared with state-of-the-art active contour methods on over 100 real ultrasound images of ascites, and the results show the superiority of our method in both accuracy and time efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
You发布了新的文献求助10
刚刚
嘎嘎发发布了新的文献求助10
1秒前
2秒前
2秒前
dan1029发布了新的文献求助10
3秒前
yudandan@CJLU发布了新的文献求助10
3秒前
4秒前
x跳完成签到,获得积分10
4秒前
小马甲应助HK采纳,获得10
4秒前
5秒前
杨yyyy关注了科研通微信公众号
6秒前
6秒前
酷波er应助纪飞松采纳,获得10
6秒前
闫奥发布了新的文献求助10
8秒前
NexusExplorer应助xin采纳,获得10
8秒前
8秒前
8秒前
oreocth完成签到,获得积分20
9秒前
Qiao完成签到,获得积分10
10秒前
不安白秋发布了新的文献求助10
10秒前
斯文的从彤完成签到,获得积分20
10秒前
Eleanor完成签到,获得积分10
11秒前
鹿lu发布了新的文献求助10
11秒前
asdzsx完成签到,获得积分10
11秒前
99598完成签到,获得积分10
12秒前
乐乐应助yaya采纳,获得10
13秒前
小二郎应助米花采纳,获得10
13秒前
共享精神应助米花采纳,获得10
13秒前
华仔应助米花采纳,获得10
13秒前
CipherSage应助米花采纳,获得10
13秒前
酷波er应助米花采纳,获得10
13秒前
13秒前
科研通AI2S应助闫奥采纳,获得10
14秒前
yejq发布了新的文献求助10
14秒前
香蕉觅云应助Emiya采纳,获得10
16秒前
zt永不重名完成签到,获得积分10
16秒前
烟花应助江峰采纳,获得10
17秒前
杲杲完成签到,获得积分10
17秒前
嘎嘎发完成签到,获得积分10
18秒前
20秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580