Estimation of engineering bedrock layer utilizing ground surface elevation in Gaussian process regression

基岩 仰角(弹道) 地质学 克里金 数字高程模型 大地测量学 岩土工程 地貌学 遥感 几何学 统计 数学
作者
Yuto Tsuda,Yukihisa Tomizawa,Ikumasa Yoshida,Wada Masao,Naoaki Suemasa,Yu Otake
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:160: 105548-105548 被引量:1
标识
DOI:10.1016/j.compgeo.2023.105548
摘要

An understanding of the ground structure has a significant impact on the performance of any structure built. Many cases of substantial inclination and settlement of buildings due to insufficient understanding have been reported. In the early stages of design, it is often difficult to estimate the depth to the bedrock layer over a wide area from a very limited number of borings. It is known that the elevation of the engineering bedrock layer and ground surface elevation are highly correlated. Ground surface elevation are useful as information on the elevation of the engineering bedrock layer because such data are available in the early stages. This paper proposes a methodology for estimating the spatial distribution of the engineering bedrock layer by utilizing the ground surface elevation in Gaussian process regression. We focus on the tendency of the engineering bedrock layer to be close in elevation to the ground surface when the slope angle is large. If the slope angle is below a certain value, the ground surface elevation is considered to have no significant information for engineering bedrock estimation and is excluded from observation. The estimation accuracy is evaluated by cross-validation, and the effectiveness of the proposed method is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
agoni完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
sunxs完成签到,获得积分20
5秒前
燕燕于飞发布了新的文献求助10
6秒前
小章完成签到,获得积分10
7秒前
sunxs发布了新的文献求助10
7秒前
xybjt发布了新的文献求助30
10秒前
更深的蓝911完成签到,获得积分20
10秒前
HJJHJH发布了新的文献求助10
11秒前
寂寞的白筠完成签到,获得积分10
13秒前
13秒前
万能图书馆应助楚文强采纳,获得10
13秒前
16秒前
老实皮皮虾完成签到,获得积分10
17秒前
希望天下0贩的0应助xybjt采纳,获得30
18秒前
头盔小猪完成签到,获得积分10
18秒前
19秒前
tmxx完成签到,获得积分20
19秒前
20秒前
tmxx发布了新的文献求助10
22秒前
楚文强发布了新的文献求助10
24秒前
24秒前
24秒前
苹果灵槐完成签到 ,获得积分10
25秒前
今后应助酷炫冰安采纳,获得30
26秒前
华仔应助sun采纳,获得30
30秒前
pl完成签到 ,获得积分10
30秒前
bbj发布了新的文献求助10
30秒前
文艺寄灵完成签到,获得积分10
33秒前
ZDS完成签到,获得积分10
35秒前
小蘑菇应助妖妖灵采纳,获得10
37秒前
37秒前
39秒前
唔西迪西完成签到 ,获得积分10
40秒前
40秒前
茜茜发布了新的文献求助10
42秒前
Foxjker完成签到 ,获得积分10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731