Deep Learning Radiomics Model of Dynamic Contrast‐Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma

医学 接收机工作特性 肝细胞癌 朴素贝叶斯分类器 人工智能 组内相关 放射科 动态增强MRI 逻辑回归 核医学 磁共振成像 计算机科学 支持向量机 内科学 临床心理学 心理测量学
作者
Xue Dong,Jiawen Yang,Binhao Zhang,Yujing Li,Guanliang Wang,Jinyao Chen,Yuguo Wei,Huangqi Zhang,Qingqing Chen,Shengze Jin,Lingxia Wang,Hai-Qing He,Meifu Gan,Wenbin Ji
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (1): 108-119 被引量:23
标识
DOI:10.1002/jmri.28745
摘要

Background Vessels encapsulating tumor cluster (VETC) is a critical prognostic factor and therapeutic predictor of hepatocellular carcinoma (HCC). However, noninvasive evaluation of VETC remains challenging. Purpose To develop and validate a deep learning radiomic (DLR) model of dynamic contrast‐enhanced MRI (DCE‐MRI) for the preoperative discrimination of VETC and prognosis of HCC. Study type Retrospective. Population A total of 221 patients with histologically confirmed HCC and stratified this cohort into training set ( n = 154) and time‐independent validation set ( n = 67). Field Strength/Sequence A 1.5 T and 3.0 T; DCE imaging with T1 ‐weighted three‐dimensional fast spoiled gradient echo. Assessment Histological specimens were used to evaluate VETC status. VETC+ cases had a visible pattern (≥5% tumor area), while cases without any pattern were VETC−. The regions of intratumor and peritumor were segmented manually in the arterial, portal‐venous and delayed phase (AP, PP, and DP, respectively) of DCE‐MRI and reproducibility of segmentation was evaluated. Deep neural network and machine learning (ML) classifiers (logistic regression, decision tree, random forest, SVM, KNN, and Bayes) were used to develop nine DLR, 54 ML and clinical–radiological (CR) models based on AP, PP, and DP of DCE‐MRI for evaluating VETC status and association with recurrence. Statistical Tests The Fleiss kappa, intraclass correlation coefficient, receiver operating characteristic curve, area under the curve (AUC), Delong test and Kaplan–Meier survival analysis. P value <0.05 was considered as statistical significance. Results Pathological VETC+ were confirmed in 68 patients (training set: 46, validation set: 22). In the validation set, DLR model based on peritumor PP (peri‐PP) phase had the best performance (AUC: 0.844) in comparison to CR (AUC: 0.591) and ML (AUC: 0.672) models. Significant differences in recurrence rates between peri‐PP DLR model‐predicted VETC+ and VETC− status were found. Data Conclusions The DLR model provides a noninvasive method to discriminate VETC status and prognosis of HCC patients preoperatively. Evidence Level 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助郭晓琦采纳,获得10
刚刚
夙夙完成签到,获得积分10
1秒前
孙刚发布了新的文献求助10
1秒前
quhayley发布了新的文献求助30
1秒前
晚灯君发布了新的文献求助10
2秒前
demian发布了新的文献求助10
3秒前
3秒前
3秒前
Jasper应助hp571采纳,获得10
3秒前
3秒前
天天快乐应助李治海采纳,获得10
4秒前
可达燊完成签到,获得积分10
4秒前
今后应助小怪兽采纳,获得10
5秒前
小晟完成签到,获得积分10
5秒前
小鹿呀完成签到,获得积分10
5秒前
Connie完成签到,获得积分10
5秒前
uu发布了新的文献求助10
5秒前
一只鱼的故事完成签到,获得积分10
6秒前
流星完成签到,获得积分10
7秒前
liyizhe完成签到 ,获得积分10
7秒前
7秒前
徐风年完成签到,获得积分10
8秒前
猕猴桃发布了新的文献求助30
9秒前
9秒前
刘源发布了新的文献求助10
9秒前
10秒前
glanceofwind完成签到 ,获得积分10
10秒前
可达燊发布了新的文献求助50
10秒前
Akim应助kk采纳,获得10
10秒前
传奇3应助爱听歌的寄云采纳,获得10
11秒前
xW12123完成签到,获得积分10
11秒前
JamesPei应助三三采纳,获得10
11秒前
11秒前
11秒前
12秒前
hp571完成签到,获得积分10
13秒前
打击8完成签到 ,获得积分10
13秒前
baobao完成签到,获得积分10
13秒前
思源应助爱吃香菜采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635