Deep Learning Radiomics Model of Dynamic Contrast‐Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma

医学 接收机工作特性 肝细胞癌 朴素贝叶斯分类器 人工智能 组内相关 放射科 动态增强MRI 逻辑回归 核医学 磁共振成像 计算机科学 支持向量机 内科学 临床心理学 心理测量学
作者
Xue Dong,Jiawen Yang,Binhao Zhang,Yujing Li,Guanliang Wang,Jinyao Chen,Yuguo Wei,Huangqi Zhang,Qingqing Chen,Shengze Jin,Lingxia Wang,Hai-Qing He,Meifu Gan,Wenbin Ji
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (1): 108-119 被引量:16
标识
DOI:10.1002/jmri.28745
摘要

Background Vessels encapsulating tumor cluster (VETC) is a critical prognostic factor and therapeutic predictor of hepatocellular carcinoma (HCC). However, noninvasive evaluation of VETC remains challenging. Purpose To develop and validate a deep learning radiomic (DLR) model of dynamic contrast‐enhanced MRI (DCE‐MRI) for the preoperative discrimination of VETC and prognosis of HCC. Study type Retrospective. Population A total of 221 patients with histologically confirmed HCC and stratified this cohort into training set ( n = 154) and time‐independent validation set ( n = 67). Field Strength/Sequence A 1.5 T and 3.0 T; DCE imaging with T1 ‐weighted three‐dimensional fast spoiled gradient echo. Assessment Histological specimens were used to evaluate VETC status. VETC+ cases had a visible pattern (≥5% tumor area), while cases without any pattern were VETC−. The regions of intratumor and peritumor were segmented manually in the arterial, portal‐venous and delayed phase (AP, PP, and DP, respectively) of DCE‐MRI and reproducibility of segmentation was evaluated. Deep neural network and machine learning (ML) classifiers (logistic regression, decision tree, random forest, SVM, KNN, and Bayes) were used to develop nine DLR, 54 ML and clinical–radiological (CR) models based on AP, PP, and DP of DCE‐MRI for evaluating VETC status and association with recurrence. Statistical Tests The Fleiss kappa, intraclass correlation coefficient, receiver operating characteristic curve, area under the curve (AUC), Delong test and Kaplan–Meier survival analysis. P value <0.05 was considered as statistical significance. Results Pathological VETC+ were confirmed in 68 patients (training set: 46, validation set: 22). In the validation set, DLR model based on peritumor PP (peri‐PP) phase had the best performance (AUC: 0.844) in comparison to CR (AUC: 0.591) and ML (AUC: 0.672) models. Significant differences in recurrence rates between peri‐PP DLR model‐predicted VETC+ and VETC− status were found. Data Conclusions The DLR model provides a noninvasive method to discriminate VETC status and prognosis of HCC patients preoperatively. Evidence Level 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏的白云完成签到,获得积分10
刚刚
胜胜糖完成签到 ,获得积分10
1秒前
Owen应助Ganlou采纳,获得10
1秒前
qing1245完成签到,获得积分10
2秒前
clarklkq完成签到,获得积分10
2秒前
李宇超完成签到 ,获得积分20
5秒前
Alone离殇完成签到 ,获得积分10
5秒前
chenhd完成签到,获得积分10
9秒前
坦率的惊蛰完成签到,获得积分10
9秒前
果子完成签到 ,获得积分10
10秒前
恒恒爱吃鱼完成签到 ,获得积分10
11秒前
刘彤完成签到,获得积分10
11秒前
阳阳杜完成签到 ,获得积分10
12秒前
世上僅有的榮光之路完成签到,获得积分10
13秒前
CipherSage应助Qiao采纳,获得10
13秒前
quanwangertaiyu完成签到 ,获得积分10
13秒前
谨慎纸飞机完成签到,获得积分10
14秒前
完美的凝蝶完成签到 ,获得积分20
16秒前
汉堡包应助真实的一鸣采纳,获得10
17秒前
fdpb完成签到,获得积分10
18秒前
tony完成签到,获得积分10
19秒前
nuonuomimi完成签到,获得积分10
19秒前
只影有你完成签到,获得积分10
19秒前
Amy完成签到,获得积分10
22秒前
xzz完成签到,获得积分10
22秒前
友好盼波完成签到,获得积分10
23秒前
Liang完成签到,获得积分10
24秒前
phil完成签到,获得积分10
24秒前
滴滴滴滴完成签到,获得积分10
27秒前
XX完成签到 ,获得积分10
27秒前
畅快的道之完成签到,获得积分10
27秒前
qwa完成签到 ,获得积分20
30秒前
song完成签到 ,获得积分10
31秒前
打铁佬完成签到,获得积分10
31秒前
乱世才子完成签到,获得积分10
32秒前
菡一往完成签到 ,获得积分10
32秒前
33秒前
烂漫时完成签到,获得积分10
33秒前
kakakakak完成签到,获得积分10
34秒前
sos完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565