作者
Bohao Cui,Xu Guo,Wei Zhou,Xiaodan Zhang,Kai He,Xiaohong Wang,Dongxue Lin,Selena Wei-Zhang,Yan Zhao,Shengnan Liu,Hui Zhou,Qing Wang,Xueming Yao,Ying Shi,Ruotian Xie,Dong Xue,Yi Lei,Mei Du,Yongsheng Chang,Heping Xu,Dongming Zhou,Ying Yu,Xiaohong Wang,Hua Yan
摘要
The neovascular form of age-related macular degeneration (nvAMD) is the leading cause of blindness in the elderly population. Vascular endothelial growth factor (VEGF) plays a crucial role in choroidal neovascularization (CNV), and anti-VEGF therapy is recommended as first-line therapy for nvAMD. However, many patients do not radically benefit from this therapy. Epidemiological data suggest that physical exercise is beneficial for many human diseases, including nvAMD. Yet, its protective mechanism and therapeutic potential remain unknown. Here, using clinical samples and mouse models, we found that exercise reduced CNV and enhanced anti-angiogenic therapy efficacy by inhibiting AIM2 inflammasome activation. Furthermore, transfusion of serum from exercised mice transferred the protective effects to sedentary mice. Proteomic data revealed that exercise promoted the release of adiponectin, an anti-inflammatory adipokine from adipose tissue into the circulation, which reduced ROS-mediated DNA damage and suppressed AIM2 inflammasome activation in myeloid cells of CNV eyes through AMPK-p47phox pathway. Simultaneous targeting AIM2 inflammasome product IL-1β and VEGF produced a synergistic effect for treating choroidal neovascularization. Collectively, this study highlights the therapeutic potential of an exercise-AMD axis and uncovers the AIM2 inflammasome and its product IL-1β as potential targets for treating nvAMD patients and enhancing the efficacy of anti-VEGF monotherapy.