Predicting Major Adverse Cardiac Events Using Deep Learning–based Coronary Artery Disease Analysis at CT Angiography

医学 冠状动脉疾病 内科学 胸痛 心脏病学 心肌梗塞 危险系数 不稳定型心绞痛 急性冠脉综合征 比例危险模型 置信区间
作者
Jin Young Kim,Kye Ho Lee,Ji Won Lee,J K Park,Jin‐Ho Park,Pan Ki Kim,Kyunghwa Han,Song‐Ee Baek,Dong Jin Im,Byoung Wook Choi,Jin Hur
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240459
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate the predictive value of deep learning (DL)-based coronary artery disease (CAD) extent analysis for major adverse cardiac events (MACEs) in patients with acute chest pain presenting to the emergency department (ED). Materials and Methods This retrospective multicenter observational study included consecutive patients with acute chest pain who underwent coronary CT angiography (CCTA) at three institutional EDs from January 2018 to December 2022. Patients were classified as having no CAD, nonobstructive CAD, or obstructive CAD using a DL model. The primary outcome was MACEs during follow-up, defined as a composite of cardiac death, nonfatal myocardial infarction, and hospitalization for unstable angina. Cox proportional hazards regression models were used to evaluate the predictors of MACEs. Results The study included 408 patients (224 male; mean age, 59.4 ± 14.6 years). The DL model classified 162 (39.7%) patients as having no CAD, 94 (23%) as having nonobstructive CAD, and 152 (37.3%) as having obstructive CAD. Sixty-three (15.4%) patients experienced MACEs during follow-up. Patients with MACEs had a higher prevalence of obstructive CAD than those without ( P < .001). In multivariate analysis model 1 (clinical risk factors), dyslipidemia (Hazard ratio [HR], 2.15 and elevated Troponin-T (HR 2.13) predicted MACEs (all P < .05). In model 2 (clinical risk factors + DL-based CAD extent), obstructive CAD detected by the DL model was the most significant independent predictor of MACEs (HR, 88.07, P < .001). Harrell’s C-statistic showed that DL-based CAD extent enhanced the risk stratification beyond clinical risk factors (Harrell’s C-statistics: 0.94 versus 0.80, P < .001). Conclusion DL-based detection of obstructive CAD demonstrated stronger predictive value than clinical risk factors for MACEs in patients with acute chest pain presenting to the ED. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gg发布了新的文献求助10
1秒前
白沙湾完成签到,获得积分10
1秒前
乐乐应助李月采纳,获得10
1秒前
1秒前
2秒前
3秒前
ysxl发布了新的文献求助10
3秒前
4秒前
沐沐发布了新的文献求助10
5秒前
等等发布了新的文献求助10
6秒前
XCY发布了新的文献求助10
6秒前
7秒前
斯文败类应助於伟祺采纳,获得50
8秒前
达夫斯基完成签到,获得积分10
8秒前
9秒前
Yy发布了新的文献求助10
9秒前
9秒前
10秒前
合适不愁完成签到,获得积分10
10秒前
科目三应助科研小白采纳,获得10
11秒前
素律完成签到,获得积分10
11秒前
拼搏的邴发布了新的文献求助10
12秒前
12秒前
灯灯发布了新的文献求助10
12秒前
无奈向真完成签到,获得积分10
12秒前
12秒前
Ankh完成签到,获得积分10
12秒前
12秒前
李月发布了新的文献求助10
14秒前
火山完成签到 ,获得积分10
15秒前
江二毛发布了新的文献求助50
16秒前
123发布了新的文献求助10
17秒前
17秒前
瘦弱小曹发布了新的文献求助10
17秒前
不忘初心完成签到,获得积分10
18秒前
18秒前
20秒前
汉堡包应助XCY采纳,获得10
21秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728126
求助须知:如何正确求助?哪些是违规求助? 3273267
关于积分的说明 9980631
捐赠科研通 2988639
什么是DOI,文献DOI怎么找? 1639727
邀请新用户注册赠送积分活动 778961
科研通“疑难数据库(出版商)”最低求助积分说明 747838