Nudging Perceived Credibility: The Impact of AIGC Labeling on User Distinction of AI-Generated Content

可靠性 内容(测量理论) 用户生成的内容 来源可信度 心理学 计算机科学 情报检索 万维网 认识论 哲学 数学 社会化媒体 数学分析
作者
Fan Li,Yang Ya,Guoming Yu
标识
DOI:10.1177/27523543251317572
摘要

The rapid advancement of generative artificial intelligence (AI) has made AI-generated content (AIGC) increasingly prevalent. However, misinformation created by AI has also gained significant traction in online consumption, while individuals often lack the skills and attribues needed to distinguish AIGC from traditional content. In response, current media practices have introduced AIGC labels as a potential intervention. This study investigates whether AIGC labels influence users’ perceptions of credibility, accounting for differences in prior experience and content categories. An online experiment was conducted to simulate a realistic media environment, involving 236 valid participants. The findings reveal that the main effect of AIGC labels on perceived credibility is not significant. However, both prior experience and content category show significant main effects ( P < .001), with participants who have greater prior experience perceiving nonprofit content as more credible. Two significant interaction effects were also identified: between content category and prior experience, and between AIGC labels and prior experience ( P < .001). Specifically, participants with limited prior experience exhibited notable differences in trust depending on the content category ( P < .001), while those with extensive prior experience showed no significant differences in trust across content categories ( P = .06). This study offers several key insights. First, AIGC labels serve as a viable and replicable intervention that does not significantly alter perceptions of credibility for AIGC. Second, by reshaping the choice architecture, AIGC labels can help address digital inequalities. Third, AIGC labeling extends alignment theory from implicit value alignment to explicit human–machine interaction alignment. Fourth, the long-term effects of AIGC labels, such as the potential for implicit truth effects with prolonged use, warrant further attention. Lastly, this study provides practical implications for media platforms, users, and policymakers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助虚心的嫣然采纳,获得10
2秒前
3秒前
4秒前
小巧梦玉完成签到 ,获得积分10
4秒前
李爱国应助RuiBigHead采纳,获得10
7秒前
科研通AI5应助taotao采纳,获得10
8秒前
CodeCraft应助明亮的咖啡豆采纳,获得10
9秒前
9秒前
Wxy发布了新的文献求助10
9秒前
11秒前
我是老大应助8D采纳,获得10
12秒前
12秒前
13秒前
斯文的寒风举报一只A茂求助涉嫌违规
13秒前
14秒前
隐形的易真完成签到,获得积分10
14秒前
16秒前
ya完成签到,获得积分10
16秒前
sheh发布了新的文献求助30
17秒前
24601发布了新的文献求助10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
木头马尾应助科研通管家采纳,获得20
17秒前
李健应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
如意2023发布了新的文献求助10
18秒前
研友_VZG7GZ应助Annabelle采纳,获得30
19秒前
orixero应助zzzzz采纳,获得10
20秒前
北雁发布了新的文献求助10
20秒前
尤今发布了新的文献求助10
21秒前
22秒前
大个应助ya采纳,获得30
22秒前
23秒前
芋泥发布了新的文献求助10
25秒前
大模型应助哈里鹿呀采纳,获得10
26秒前
小小月完成签到 ,获得积分10
27秒前
nice1334完成签到,获得积分10
27秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715646
求助须知:如何正确求助?哪些是违规求助? 3262433
关于积分的说明 9924671
捐赠科研通 2976298
什么是DOI,文献DOI怎么找? 1632174
邀请新用户注册赠送积分活动 774349
科研通“疑难数据库(出版商)”最低求助积分说明 744882