3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction

材料科学 生物医学工程 软骨 再生(生物学) 生物陶瓷 生物材料 硅酸钙 磷灰石 化学 复合材料 纳米技术 解剖 矿物学 细胞生物学 冶金 医学 生物
作者
Lei Chen,Cuijun Deng,Jiayi Li,Qingqiang Yao,Jiang Chang,Liming Wang,Chengtie Wu
出处
期刊:Biomaterials [Elsevier]
卷期号:196: 138-150 被引量:203
标识
DOI:10.1016/j.biomaterials.2018.04.005
摘要

It is difficult to achieve self-healing outcoming for the osteochondral defects caused by degenerative diseases. The simultaneous regeneration of both cartilage and subchondral bone tissues is an effective therapeutic strategy for osteochondral defects. However, it is challenging to design a single type of bioscaffold with suitable ionic components and beneficial osteo/chondral-stimulation ability for regeneration of osteochondral defects. In this study, we successfully synthesized a pure-phase lithium calcium silicate (Li2Ca4Si4O13, L2C4S4) bioceramic by a sol-gel method, and further prepared L2C4S4 scaffolds by using a 3D-printing method. The compressive strength of L2C4S4 scaffolds could be well controlled in the range of 15-40 MPa when pore size varied from 170 to 400 μm. L2C4S4 scaffolds have been demonstrated to possess controlled biodegradability and good apatite-mineralization ability. At a certain concentration range, the ionic products from L2C4S4 significantly stimulated the proliferation and maturation of chondrocytes, as well as promoted the osteogenic differentiation of rBMSCs. L2C4S4 scaffolds simultaneously promoted the regeneration of both cartilage and subchondral bone as compared to pure β-TCP scaffolds in rabbit osteochondral defects. These findings suggest that 3D-printed L2C4S4 scaffolds with such specific ionic combination, high mechanical strength and good degradability as well as dual bioactivities, represent a promising biomaterial for osteochondral interface reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
刚刚
2秒前
可爱的函函应助陈露佳采纳,获得10
4秒前
Q11发布了新的文献求助10
4秒前
4秒前
MOMO发布了新的文献求助10
4秒前
法式千层饼完成签到,获得积分10
5秒前
咚咚完成签到,获得积分20
5秒前
月色关注了科研通微信公众号
5秒前
大力世界发布了新的文献求助10
5秒前
Aixzhou发布了新的文献求助10
5秒前
5秒前
6秒前
高大zj发布了新的文献求助10
7秒前
方方别方完成签到 ,获得积分10
7秒前
7秒前
saluo完成签到,获得积分10
8秒前
llllly完成签到,获得积分10
8秒前
ash发布了新的文献求助10
10秒前
10秒前
浪而而发布了新的文献求助10
10秒前
11秒前
11秒前
上官若男应助高大zj采纳,获得10
12秒前
yy00应助江氏巨颏虎采纳,获得260
12秒前
饱满的香烟完成签到,获得积分20
12秒前
寇旭晗完成签到 ,获得积分10
12秒前
15秒前
15秒前
wt200001完成签到,获得积分10
15秒前
小猫多鱼完成签到,获得积分10
15秒前
庾磬发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
19秒前
20秒前
gangstashit发布了新的文献求助10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514849
求助须知:如何正确求助?哪些是违规求助? 3097216
关于积分的说明 9234514
捐赠科研通 2792168
什么是DOI,文献DOI怎么找? 1532293
邀请新用户注册赠送积分活动 711963
科研通“疑难数据库(出版商)”最低求助积分说明 707062