Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis

情绪分析 社会化媒体 产品(数学) 计算机科学 产品规划 新产品开发 客户的声音 数据科学 营销 万维网 业务 客户保留 人工智能 服务(商务) 几何学 数学 服务质量
作者
Byeongki Jeong,Janghyeok Yoon,Jae-Min Lee
出处
期刊:International Journal of Information Management [Elsevier]
卷期号:48: 280-290 被引量:272
标识
DOI:10.1016/j.ijinfomgt.2017.09.009
摘要

Social media data have recently attracted considerable attention as an emerging voice of the customer as it has rapidly become a channel for exchanging and storing customer-generated, large-scale, and unregulated voices about products. Although product planning studies using social media data have used systematic methods for product planning, their methods have limitations, such as the difficulty of identifying latent product features due to the use of only term-level analysis and insufficient consideration of opportunity potential analysis of the identified features. Therefore, an opportunity mining approach is proposed in this study to identify product opportunities based on topic modeling and sentiment analysis of social media data. For a multifunctional product, this approach can identify latent product topics discussed by product customers in social media using topic modeling, thereby quantifying the importance of each product topic. Next, the satisfaction level of each product topic is evaluated using sentiment analysis. Finally, the opportunity value and improvement direction of each product topic from a customer-centered view are identified by an opportunity algorithm based on product topics’ importance and satisfaction. We expect that our approach for product planning will contribute to the systematic identification of product opportunities from large-scale customer-generated social media data and will be used as a real-time monitoring tool for changing customer needs analysis in rapidly evolving product environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梓铭发布了新的文献求助10
刚刚
机灵魂幽发布了新的文献求助10
刚刚
十三应助文刀采纳,获得10
1秒前
超人完成签到,获得积分10
1秒前
卷儿w发布了新的文献求助30
1秒前
小强呐完成签到 ,获得积分10
1秒前
情怀应助夏天的倒影采纳,获得10
2秒前
浮游应助Galaxy8采纳,获得10
2秒前
MR_芝欧完成签到,获得积分10
2秒前
李健的粉丝团团长应助Yang采纳,获得10
2秒前
Hello应助axuan采纳,获得10
2秒前
斯文败类应助三岁半采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
赘婿应助杜晓慧采纳,获得10
4秒前
脑洞疼应助ln1111采纳,获得10
4秒前
5秒前
6秒前
7秒前
mimimi完成签到,获得积分10
7秒前
cyj发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
时舒发布了新的文献求助30
9秒前
ankey完成签到,获得积分10
9秒前
10秒前
一定accept完成签到 ,获得积分10
10秒前
顾矜应助木子采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
大个应助dongtan采纳,获得10
12秒前
Yang完成签到,获得积分10
12秒前
jc发布了新的文献求助10
12秒前
科研通AI6应助坦率灵槐采纳,获得10
12秒前
12秒前
Danboard发布了新的文献求助10
14秒前
123发布了新的文献求助10
14秒前
神说要有光完成签到 ,获得积分10
14秒前
浮游应助Galaxy8采纳,获得10
15秒前
科研通AI6应助xzy采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914