Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis

情绪分析 社会化媒体 产品(数学) 计算机科学 产品规划 新产品开发 客户的声音 数据科学 营销 万维网 业务 客户保留 人工智能 服务(商务) 几何学 数学 服务质量
作者
Byeongki Jeong,Janghyeok Yoon,Jae-Min Lee
出处
期刊:International Journal of Information Management [Elsevier]
卷期号:48: 280-290 被引量:272
标识
DOI:10.1016/j.ijinfomgt.2017.09.009
摘要

Social media data have recently attracted considerable attention as an emerging voice of the customer as it has rapidly become a channel for exchanging and storing customer-generated, large-scale, and unregulated voices about products. Although product planning studies using social media data have used systematic methods for product planning, their methods have limitations, such as the difficulty of identifying latent product features due to the use of only term-level analysis and insufficient consideration of opportunity potential analysis of the identified features. Therefore, an opportunity mining approach is proposed in this study to identify product opportunities based on topic modeling and sentiment analysis of social media data. For a multifunctional product, this approach can identify latent product topics discussed by product customers in social media using topic modeling, thereby quantifying the importance of each product topic. Next, the satisfaction level of each product topic is evaluated using sentiment analysis. Finally, the opportunity value and improvement direction of each product topic from a customer-centered view are identified by an opportunity algorithm based on product topics’ importance and satisfaction. We expect that our approach for product planning will contribute to the systematic identification of product opportunities from large-scale customer-generated social media data and will be used as a real-time monitoring tool for changing customer needs analysis in rapidly evolving product environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助pharmren采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
Orange应助友好的慕卉采纳,获得10
1秒前
1秒前
史迪奇大王完成签到,获得积分10
1秒前
和谐谷蕊发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
mhr完成签到,获得积分10
2秒前
ylyu完成签到,获得积分10
2秒前
充电宝应助李迪采纳,获得10
2秒前
wei发布了新的文献求助10
2秒前
moon完成签到,获得积分10
2秒前
3秒前
LiNa完成签到 ,获得积分10
3秒前
浮浮世世完成签到,获得积分10
3秒前
经友菱发布了新的文献求助10
3秒前
kk发布了新的文献求助10
3秒前
乐进完成签到,获得积分10
3秒前
某某完成签到,获得积分10
4秒前
芃芃野完成签到,获得积分10
4秒前
七n一完成签到,获得积分10
4秒前
Merci完成签到,获得积分10
5秒前
鹤轩应助史迪奇大王采纳,获得10
5秒前
无花果应助积极璎采纳,获得10
5秒前
66666666666666完成签到,获得积分10
5秒前
6秒前
7秒前
浮浮世世发布了新的文献求助10
7秒前
7秒前
靓丽紫真发布了新的文献求助10
8秒前
allensune发布了新的文献求助10
9秒前
大龙哥886应助好好采纳,获得10
9秒前
9秒前
10秒前
烟花应助可可采纳,获得10
10秒前
10秒前
pjmwj发布了新的文献求助10
11秒前
和谐谷蕊完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670