已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

流动应力 应变率 材料科学 压力(语言学) 人工神经网络 本构方程 拉伤 压缩(物理) 相关系数 复合材料 热力学 统计 人工智能 数学 物理 计算机科学 有限元法 哲学 内科学 医学 语言学
作者
Ravindranadh Bobbili,B. Ramakrishna,V. Madhu,A.K. Gogia
出处
期刊:Defence Technology [Elsevier]
卷期号:11 (1): 93-98 被引量:36
标识
DOI:10.1016/j.dt.2014.08.004
摘要

An artificial neural network (ANN) constitutive model and Johnson–Cook (J–C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25°–300 °C), strains (0.05–0.3) and strain rates (1500–4500 s−1) were employed to formulate J–C model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The J–C model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jbzmm发布了新的文献求助10
2秒前
2秒前
3秒前
11秒前
12秒前
13秒前
Jasmine发布了新的文献求助10
15秒前
万能图书馆应助张文静采纳,获得10
16秒前
17秒前
18秒前
拼搏妙竹发布了新的文献求助20
18秒前
23秒前
呼噜完成签到,获得积分10
23秒前
25秒前
陈全刚完成签到,获得积分10
27秒前
鹿依波完成签到,获得积分10
29秒前
言余完成签到 ,获得积分10
30秒前
呼噜发布了新的文献求助10
30秒前
32秒前
32秒前
bkagyin应助犹豫曼岚采纳,获得10
32秒前
Akim应助爱听歌初柳采纳,获得10
36秒前
cyyyyyyyyyy完成签到 ,获得积分10
37秒前
张文静发布了新的文献求助10
37秒前
科研通AI2S应助chen采纳,获得10
40秒前
乐于助人大好人完成签到 ,获得积分10
41秒前
43秒前
Mars夜愿发布了新的文献求助10
44秒前
林巧完成签到 ,获得积分10
45秒前
岁月荣耀完成签到 ,获得积分10
46秒前
犹豫曼岚发布了新的文献求助10
50秒前
50秒前
51秒前
爱听歌初柳完成签到,获得积分20
51秒前
51秒前
学术小白完成签到,获得积分10
52秒前
科研通AI2S应助Mars夜愿采纳,获得10
52秒前
合适的芸遥完成签到,获得积分10
52秒前
爆米花应助专注翠梅采纳,获得10
53秒前
54秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314210
求助须知:如何正确求助?哪些是违规求助? 2946566
关于积分的说明 8530692
捐赠科研通 2622261
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665307
邀请新用户注册赠送积分活动 650838