Support Vector Machine Technique for the Short Term Prediction of Travel Time

支持向量机 计算机科学 人工神经网络 期限(时间) 实时数据 机器学习 时间序列 领域(数学) 旅行时间 人工智能 数据挖掘 运筹学 运输工程 工程类 万维网 数学 量子力学 物理 纯数学
作者
Lelitha Vanajakshi,Laurence R. Rilett
出处
期刊:IEEE Intelligent Vehicles Symposium 被引量:110
标识
DOI:10.1109/ivs.2007.4290181
摘要

A vast majority of urban transportation systems in North America are equipped with traffic surveillance systems that provide real time traffic information to traffic management centers. The information from these are processed and provided back to the travelers in real time. However, the travelers are interested to know not only the current traffic information, but also the future traffic conditions predicted based on the real time data. These predicted values inform the drivers on what they can expect when they make the trip. Travel time is one of the most popular variables which the users are interested to know. Travelers make decisions to bypass congested segments of the network, to change departure time or destination etc., based on this information. Hence it is important that the predicted values be as accurate as possible. A number of different forecasting methods have been proposed for travel time forecasting including historic method, real-time method, time series analysis, and artificial neural networks (ANN). This paper examines the use of a machine learning technique, namely support vector machines (SVM), for the short-term prediction of travel time. While other machine learning techniques, such as ANN, have been extensively studied, the reported applications of SVM in the field of transportation engineering are very few. A comparison of the performance of SVM with ANN, real time, and historic approach is carried out. Data from the TransGuide Traffic Management center in San Antonio, Texas, USA is used for the analysis. From the results it was found that SVM is a viable alternative for short-term prediction problems when the amount of data is less or noisy in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙志彪发布了新的文献求助10
1秒前
1秒前
2秒前
落晖完成签到 ,获得积分10
2秒前
bmhs2017应助ycc采纳,获得50
2秒前
萍萍完成签到,获得积分10
2秒前
快乐的鱼发布了新的文献求助10
3秒前
6秒前
Sugarhm完成签到,获得积分10
6秒前
博士发布了新的文献求助10
6秒前
萍萍发布了新的文献求助10
7秒前
啄木鸟完成签到 ,获得积分10
8秒前
zhihua完成签到,获得积分10
9秒前
11秒前
13秒前
传奇3应助顺心纸鹤采纳,获得10
14秒前
Hongmin完成签到,获得积分10
16秒前
NXK发布了新的文献求助10
17秒前
18秒前
18秒前
Hongmin发布了新的文献求助10
20秒前
俞雨鱼发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
24秒前
xh发布了新的文献求助10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
24秒前
浮游应助科研通管家采纳,获得10
24秒前
情怀应助右行采纳,获得10
24秒前
Maestro_S应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
24秒前
甘乐关注了科研通微信公众号
25秒前
机智灵薇完成签到,获得积分10
26秒前
啥也不会完成签到,获得积分10
29秒前
斯文败类应助书羽采纳,获得10
29秒前
进取拼搏完成签到,获得积分10
31秒前
32秒前
lgy完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416931
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137696
捐赠科研通 4449052
什么是DOI,文献DOI怎么找? 2440569
邀请新用户注册赠送积分活动 1432413
关于科研通互助平台的介绍 1409818