Support Vector Machine Technique for the Short Term Prediction of Travel Time

支持向量机 计算机科学 人工神经网络 期限(时间) 实时数据 机器学习 时间序列 领域(数学) 旅行时间 人工智能 数据挖掘 运筹学 运输工程 工程类 万维网 数学 量子力学 物理 纯数学
作者
Lelitha Vanajakshi,Laurence R. Rilett
出处
期刊:IEEE Intelligent Vehicles Symposium 被引量:110
标识
DOI:10.1109/ivs.2007.4290181
摘要

A vast majority of urban transportation systems in North America are equipped with traffic surveillance systems that provide real time traffic information to traffic management centers. The information from these are processed and provided back to the travelers in real time. However, the travelers are interested to know not only the current traffic information, but also the future traffic conditions predicted based on the real time data. These predicted values inform the drivers on what they can expect when they make the trip. Travel time is one of the most popular variables which the users are interested to know. Travelers make decisions to bypass congested segments of the network, to change departure time or destination etc., based on this information. Hence it is important that the predicted values be as accurate as possible. A number of different forecasting methods have been proposed for travel time forecasting including historic method, real-time method, time series analysis, and artificial neural networks (ANN). This paper examines the use of a machine learning technique, namely support vector machines (SVM), for the short-term prediction of travel time. While other machine learning techniques, such as ANN, have been extensively studied, the reported applications of SVM in the field of transportation engineering are very few. A comparison of the performance of SVM with ANN, real time, and historic approach is carried out. Data from the TransGuide Traffic Management center in San Antonio, Texas, USA is used for the analysis. From the results it was found that SVM is a viable alternative for short-term prediction problems when the amount of data is less or noisy in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柴胡完成签到,获得积分10
刚刚
强强强强完成签到,获得积分10
刚刚
刚刚
Zo发布了新的文献求助10
1秒前
卡里的乏味完成签到,获得积分10
2秒前
小陈完成签到,获得积分10
3秒前
星辰大海应助南风喜欢采纳,获得10
4秒前
科研通AI2S应助bing采纳,获得10
5秒前
科研通AI2S应助bing采纳,获得10
5秒前
5秒前
new_vision完成签到,获得积分10
5秒前
园艺小学生完成签到,获得积分10
5秒前
李爱国应助forg采纳,获得10
6秒前
Sissi完成签到,获得积分10
7秒前
aibiotech完成签到,获得积分10
7秒前
7秒前
xng完成签到,获得积分10
8秒前
8秒前
Seven完成签到,获得积分10
9秒前
邵初蓝完成签到,获得积分10
9秒前
9秒前
淡然寒蕾完成签到,获得积分10
9秒前
迷路凌柏完成签到 ,获得积分10
9秒前
yydsyk完成签到,获得积分10
10秒前
科研通AI5应助如果我沉默采纳,获得10
10秒前
樊孟完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
难过的小甜瓜完成签到,获得积分10
11秒前
将就小白完成签到,获得积分10
11秒前
11秒前
12秒前
兴奋书雪完成签到,获得积分20
12秒前
救赎完成签到,获得积分10
12秒前
13秒前
于芋菊完成签到,获得积分0
13秒前
中二少女爱喝可乐完成签到,获得积分10
13秒前
啦啦啦发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912