Support Vector Machine Technique for the Short Term Prediction of Travel Time

支持向量机 计算机科学 人工神经网络 期限(时间) 实时数据 机器学习 时间序列 领域(数学) 旅行时间 人工智能 数据挖掘 运筹学 运输工程 工程类 万维网 物理 量子力学 数学 纯数学
作者
Lelitha Vanajakshi,Laurence R. Rilett
出处
期刊:IEEE Intelligent Vehicles Symposium 被引量:110
标识
DOI:10.1109/ivs.2007.4290181
摘要

A vast majority of urban transportation systems in North America are equipped with traffic surveillance systems that provide real time traffic information to traffic management centers. The information from these are processed and provided back to the travelers in real time. However, the travelers are interested to know not only the current traffic information, but also the future traffic conditions predicted based on the real time data. These predicted values inform the drivers on what they can expect when they make the trip. Travel time is one of the most popular variables which the users are interested to know. Travelers make decisions to bypass congested segments of the network, to change departure time or destination etc., based on this information. Hence it is important that the predicted values be as accurate as possible. A number of different forecasting methods have been proposed for travel time forecasting including historic method, real-time method, time series analysis, and artificial neural networks (ANN). This paper examines the use of a machine learning technique, namely support vector machines (SVM), for the short-term prediction of travel time. While other machine learning techniques, such as ANN, have been extensively studied, the reported applications of SVM in the field of transportation engineering are very few. A comparison of the performance of SVM with ANN, real time, and historic approach is carried out. Data from the TransGuide Traffic Management center in San Antonio, Texas, USA is used for the analysis. From the results it was found that SVM is a viable alternative for short-term prediction problems when the amount of data is less or noisy in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路灵槐完成签到,获得积分10
1秒前
游一发布了新的文献求助10
1秒前
1秒前
情怀应助啊啊啊啊采纳,获得10
3秒前
考拉喜欢看文献完成签到 ,获得积分10
4秒前
EED发布了新的文献求助10
6秒前
如意板栗发布了新的文献求助30
6秒前
MOMO完成签到,获得积分10
6秒前
11号楼203完成签到,获得积分10
7秒前
苏有朋完成签到,获得积分10
8秒前
思源应助踏实星星采纳,获得10
8秒前
9秒前
CodeCraft应助MOMO采纳,获得10
10秒前
10秒前
小蘑菇应助lkk采纳,获得10
11秒前
Echo发布了新的文献求助10
11秒前
Fanny_825完成签到,获得积分10
11秒前
11秒前
11秒前
fanyueyue应助wukong采纳,获得10
12秒前
12秒前
充电宝应助寒天帝采纳,获得10
13秒前
苹果花完成签到,获得积分10
14秒前
NINI发布了新的文献求助10
14秒前
tuyoyo发布了新的文献求助10
15秒前
15秒前
15秒前
啊啊啊啊发布了新的文献求助10
16秒前
roking完成签到,获得积分10
16秒前
17秒前
Glory完成签到,获得积分10
17秒前
17秒前
小徐医生完成签到,获得积分10
19秒前
19秒前
慕青应助IR1S0110采纳,获得10
19秒前
踏实星星给踏实星星的求助进行了留言
19秒前
大个应助lang采纳,获得10
20秒前
20秒前
李健应助烫个麻辣烫采纳,获得10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496