Aperiodic crystals: A contradictio in terminis?

准周期函数 准晶 准周期性 非周期图 物理 超空间 格子(音乐) 理论物理学 章节(排版) 凝聚态物理 量子力学 数学 超对称性 组合数学 广告 声学 业务
作者
Τ. Janssen
出处
期刊:Physics Reports [Elsevier BV]
卷期号:168 (2): 55-113 被引量:179
标识
DOI:10.1016/0370-1573(88)90017-8
摘要

Although in the prevailing view a necessary condition for having a crystalline phase is lattice periodicity, it has become clear in the last decades that there are physical systems with many properties of the usual crystalline state but without three-dimensional lattice periodicity. Incommensurate modulated crystals have been known now for some time, and a couple of years ago much excitement was raised by the discovery of quasicrystals, systems with long-range order but with five-fold symmetry axes, which exclude lattice periodicity. A discussion is given of the various generalizations of the concept of lattice periodicity. In fact, these go from ordinary periodic crystal st structures to almost chaotic ones. One of these is the notion of quasiperiodicity. Section two deals with a special type of these quasiperiodic systems, tilings or space fillings with tiles or blocks of a small number of types. In section three the symmetry of quasiperiodic systems is discussed. Here the embedding into a higher-dimensional space is the key concept. Section four deals with N-dimensional crystallographic groups that occur as symmetry groups of quasiperiodic systems, so called superspace groups. In section five the diffraction from quasiperiodic systems is treated, and in section six it is shown that in some cases quasiperiodic structures may be approximated by periodic ones, and that periodic systems sometimes are more conveniently described by quasiperiodic ones. The emphasis in the symmetry discussion is on quasicrystals. This is even more so in the remaining sections. Section seven gives a brief account of the many experimental data, section eight describes what is known about the microscopic structure. Imperfections are even more important for quasiperiodic systems than for periodic ones. They are discussed in section nine. Not only microscopically do quasiperiodic systems have similarities with ordinary crystals, but also macroscopically. The morphological laws may be generalized to quasiperiodic systems, as shown in section ten. The consequences of quasiperiodicity on the physical properties is still to a large extent unclear. Mathematically they differ much from periodic systems. A discussion of a number of results is given in section eleven.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
little发布了新的文献求助10
4秒前
5秒前
桐桐应助海绵宝宝采纳,获得30
5秒前
川上富江完成签到 ,获得积分10
5秒前
chujun_cai完成签到 ,获得积分10
8秒前
图图完成签到,获得积分10
9秒前
华仔应助崔崔采纳,获得10
11秒前
Akim应助崔崔采纳,获得10
11秒前
JamesPei应助崔崔采纳,获得10
12秒前
黄紫红完成签到 ,获得积分10
12秒前
李健的粉丝团团长应助CC采纳,获得10
14秒前
15秒前
Mottri完成签到 ,获得积分10
16秒前
海绵宝宝发布了新的文献求助30
19秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得30
20秒前
所所应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
lym完成签到,获得积分10
21秒前
sound完成签到,获得积分10
22秒前
22秒前
趁微风不躁完成签到,获得积分10
24秒前
CC发布了新的文献求助10
28秒前
廿三完成签到,获得积分10
28秒前
情怀应助豆豆采纳,获得10
29秒前
zain完成签到 ,获得积分10
29秒前
29秒前
30秒前
Keyuuu30完成签到,获得积分0
32秒前
33秒前
大道要熬发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293935
求助须知:如何正确求助?哪些是违规求助? 4443973
关于积分的说明 13831812
捐赠科研通 4327924
什么是DOI,文献DOI怎么找? 2375804
邀请新用户注册赠送积分活动 1371055
关于科研通互助平台的介绍 1336111