Aperiodic crystals: A contradictio in terminis?

准周期函数 准晶 准周期性 非周期图 物理 超空间 格子(音乐) 理论物理学 章节(排版) 凝聚态物理 量子力学 数学 超对称性 组合数学 业务 广告 声学
作者
Τ. Janssen
出处
期刊:Physics Reports [Elsevier]
卷期号:168 (2): 55-113 被引量:179
标识
DOI:10.1016/0370-1573(88)90017-8
摘要

Although in the prevailing view a necessary condition for having a crystalline phase is lattice periodicity, it has become clear in the last decades that there are physical systems with many properties of the usual crystalline state but without three-dimensional lattice periodicity. Incommensurate modulated crystals have been known now for some time, and a couple of years ago much excitement was raised by the discovery of quasicrystals, systems with long-range order but with five-fold symmetry axes, which exclude lattice periodicity. A discussion is given of the various generalizations of the concept of lattice periodicity. In fact, these go from ordinary periodic crystal st structures to almost chaotic ones. One of these is the notion of quasiperiodicity. Section two deals with a special type of these quasiperiodic systems, tilings or space fillings with tiles or blocks of a small number of types. In section three the symmetry of quasiperiodic systems is discussed. Here the embedding into a higher-dimensional space is the key concept. Section four deals with N-dimensional crystallographic groups that occur as symmetry groups of quasiperiodic systems, so called superspace groups. In section five the diffraction from quasiperiodic systems is treated, and in section six it is shown that in some cases quasiperiodic structures may be approximated by periodic ones, and that periodic systems sometimes are more conveniently described by quasiperiodic ones. The emphasis in the symmetry discussion is on quasicrystals. This is even more so in the remaining sections. Section seven gives a brief account of the many experimental data, section eight describes what is known about the microscopic structure. Imperfections are even more important for quasiperiodic systems than for periodic ones. They are discussed in section nine. Not only microscopically do quasiperiodic systems have similarities with ordinary crystals, but also macroscopically. The morphological laws may be generalized to quasiperiodic systems, as shown in section ten. The consequences of quasiperiodicity on the physical properties is still to a large extent unclear. Mathematically they differ much from periodic systems. A discussion of a number of results is given in section eleven.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMM完成签到,获得积分10
刚刚
皮凡发布了新的文献求助10
刚刚
1秒前
w0304hf发布了新的文献求助10
1秒前
lili发布了新的文献求助10
1秒前
无花果应助将个烂就采纳,获得10
1秒前
45发布了新的文献求助30
3秒前
Nana发布了新的文献求助10
3秒前
3秒前
yufancy02发布了新的文献求助10
6秒前
科研通AI6应助鱼鱼鱼采纳,获得10
6秒前
酷波er应助难过含烟采纳,获得10
6秒前
UHPC完成签到,获得积分10
7秒前
忽而今夏发布了新的文献求助30
7秒前
8秒前
8秒前
fm发布了新的文献求助10
8秒前
拼搏靖巧发布了新的文献求助10
9秒前
星star完成签到 ,获得积分10
10秒前
djbj2022发布了新的文献求助10
10秒前
华仔应助什么什么哇偶采纳,获得10
11秒前
12秒前
SisiZheng发布了新的文献求助10
13秒前
陈祥薇是大聪明完成签到 ,获得积分10
13秒前
13秒前
14秒前
落木发布了新的文献求助10
15秒前
15秒前
l123完成签到 ,获得积分10
15秒前
kk99123应助dtmdg采纳,获得10
16秒前
缥缈怀绿完成签到 ,获得积分10
16秒前
16秒前
L外驴尔X发布了新的文献求助10
17秒前
lunar完成签到 ,获得积分10
17秒前
劳伦斯完成签到 ,获得积分10
18秒前
SisiZheng完成签到,获得积分20
19秒前
19秒前
唐唐完成签到,获得积分10
19秒前
godblessyou发布了新的文献求助10
20秒前
无限的水壶完成签到 ,获得积分10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930