已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aperiodic crystals: A contradictio in terminis?

准周期函数 准晶 准周期性 非周期图 物理 超空间 格子(音乐) 理论物理学 章节(排版) 凝聚态物理 量子力学 数学 超对称性 组合数学 业务 广告 声学
作者
Τ. Janssen
出处
期刊:Physics Reports [Elsevier]
卷期号:168 (2): 55-113 被引量:179
标识
DOI:10.1016/0370-1573(88)90017-8
摘要

Although in the prevailing view a necessary condition for having a crystalline phase is lattice periodicity, it has become clear in the last decades that there are physical systems with many properties of the usual crystalline state but without three-dimensional lattice periodicity. Incommensurate modulated crystals have been known now for some time, and a couple of years ago much excitement was raised by the discovery of quasicrystals, systems with long-range order but with five-fold symmetry axes, which exclude lattice periodicity. A discussion is given of the various generalizations of the concept of lattice periodicity. In fact, these go from ordinary periodic crystal st structures to almost chaotic ones. One of these is the notion of quasiperiodicity. Section two deals with a special type of these quasiperiodic systems, tilings or space fillings with tiles or blocks of a small number of types. In section three the symmetry of quasiperiodic systems is discussed. Here the embedding into a higher-dimensional space is the key concept. Section four deals with N-dimensional crystallographic groups that occur as symmetry groups of quasiperiodic systems, so called superspace groups. In section five the diffraction from quasiperiodic systems is treated, and in section six it is shown that in some cases quasiperiodic structures may be approximated by periodic ones, and that periodic systems sometimes are more conveniently described by quasiperiodic ones. The emphasis in the symmetry discussion is on quasicrystals. This is even more so in the remaining sections. Section seven gives a brief account of the many experimental data, section eight describes what is known about the microscopic structure. Imperfections are even more important for quasiperiodic systems than for periodic ones. They are discussed in section nine. Not only microscopically do quasiperiodic systems have similarities with ordinary crystals, but also macroscopically. The morphological laws may be generalized to quasiperiodic systems, as shown in section ten. The consequences of quasiperiodicity on the physical properties is still to a large extent unclear. Mathematically they differ much from periodic systems. A discussion of a number of results is given in section eleven.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Jasper应助可口可乐了采纳,获得10
4秒前
滾滾发布了新的文献求助10
5秒前
善学以致用应助littletown采纳,获得10
6秒前
勿昂完成签到 ,获得积分0
7秒前
orixero应助Gary采纳,获得10
8秒前
复杂飞瑶发布了新的文献求助10
10秒前
11秒前
利好完成签到,获得积分20
11秒前
Irisliu关注了科研通微信公众号
14秒前
快乐滑板完成签到,获得积分10
14秒前
研友_VZG7GZ应助LLQ采纳,获得10
15秒前
16秒前
健健康康发布了新的文献求助30
18秒前
小团子发布了新的文献求助10
19秒前
眼睛大的松鼠完成签到 ,获得积分10
20秒前
江沉晚吟完成签到 ,获得积分10
20秒前
完美世界应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
22秒前
寒冷哈密瓜完成签到 ,获得积分10
23秒前
乐乐应助小团子采纳,获得10
25秒前
等待的问夏完成签到 ,获得积分10
29秒前
xpqiu完成签到,获得积分10
33秒前
yikeguozi完成签到,获得积分10
33秒前
小蘑菇应助年轻的如冰采纳,获得10
34秒前
小团子完成签到,获得积分10
34秒前
18-Crown-6完成签到 ,获得积分10
38秒前
38秒前
123木头人完成签到,获得积分10
39秒前
清风明月发布了新的文献求助10
40秒前
44秒前
44秒前
dappy完成签到,获得积分10
46秒前
JamesPei应助自信的发卡采纳,获得10
47秒前
52秒前
54秒前
eschew完成签到,获得积分10
57秒前
听风说情话完成签到,获得积分10
59秒前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146623
求助须知:如何正确求助?哪些是违规求助? 2797931
关于积分的说明 7826191
捐赠科研通 2454463
什么是DOI,文献DOI怎么找? 1306280
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522