静息状态功能磁共振成像
神经科学
功能连接
人类连接体项目
连接体
大脑定位
脑功能
功能近红外光谱
神经影像学
心理学
认知
大脑活动与冥想
脑电图
前额叶皮质
标识
DOI:10.1177/1073858413502707
摘要
Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain’s low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.
科研通智能强力驱动
Strongly Powered by AbleSci AI