Genomic Prediction of Northern Corn Leaf Blight Resistance in Maize with Combined or Separated Training Sets for Heterotic Groups

异质弦理论 杂种优势 最佳线性无偏预测 生物技术 生物 枯萎病 抗性(生态学) 育种计划 预测建模 基因组选择 训练集 数学 农学 单核苷酸多态性 基因型 遗传学 统计 计算机科学 人工智能 栽培 基因 选择(遗传算法) 混合的 数学物理
作者
Frank Technow,A. W. Burger,Albrecht E. Melchinger
出处
期刊:G3: Genes, Genomes, Genetics [Genetics Society of America]
卷期号:3 (2): 197-203 被引量:115
标识
DOI:10.1534/g3.112.004630
摘要

Northern corn leaf blight (NCLB), a severe fungal disease causing yield losses worldwide, is most effectively controlled by resistant varieties. Genomic prediction could greatly aid resistance breeding efforts. However, the development of accurate prediction models requires large training sets of genotyped and phenotyped individuals. Maize hybrid breeding is based on distinct heterotic groups that maximize heterosis (the dent and flint groups in Central Europe). The resulting allocation of resources to parallel breeding programs challenges the establishment of sufficiently sized training sets within groups. Therefore, using training sets combining both heterotic groups might be a possibility of increasing training set sizes and thereby prediction accuracies. The objectives of our study were to assess the prospect of genomic prediction of NCLB resistance in maize and the benefit of a training set that combines two heterotic groups. Our data comprised 100 dent and 97 flint lines, phenotyped for NCLB resistance per se and genotyped with high-density single-nucleotide polymorphism marker data. A genomic BLUP model was used to predict genotypic values. Prediction accuracies reached a maximum of 0.706 (dent) and 0.690 (flint), and there was a strong positive response to increases in training set size. The use of combined training sets led to significantly greater prediction accuracies for both heterotic groups. Our results encourage the application of genomic prediction in NCLB-resistance breeding programs and the use of combined training sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光完成签到,获得积分10
4秒前
岁月流年完成签到,获得积分10
8秒前
某宁完成签到,获得积分10
9秒前
wanci应助风往北吹采纳,获得10
10秒前
颜倾完成签到 ,获得积分10
11秒前
dr_chou完成签到,获得积分10
14秒前
15秒前
所所应助dr_chou采纳,获得10
17秒前
爱吃猫的鱼完成签到,获得积分10
18秒前
kekao完成签到,获得积分10
19秒前
20秒前
SciGPT应助落寞银耳汤采纳,获得10
21秒前
科研通AI2S应助枯藤老柳树采纳,获得10
21秒前
暴龙战士发布了新的文献求助10
22秒前
科目三应助科研通管家采纳,获得10
23秒前
劲秉应助科研通管家采纳,获得10
23秒前
Hope应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
劲秉应助科研通管家采纳,获得10
23秒前
zwk应助科研通管家采纳,获得10
23秒前
Lin应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
23秒前
迷人秋烟应助科研通管家采纳,获得150
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
Lin应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
24秒前
劲秉应助科研通管家采纳,获得10
24秒前
24秒前
劲秉应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673473
求助须知:如何正确求助?哪些是违规求助? 3229115
关于积分的说明 9784201
捐赠科研通 2939724
什么是DOI,文献DOI怎么找? 1611239
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290