Decision trees for entity identification

鉴定(生物学) 计算机科学 决策树 人工智能 自然语言处理 植物 生物
作者
Venkatesan T. Chakaravarthy,Vinayaka Pandit,Sambuddha Roy,Pranjal Awasthi,Mukesh K. Mohania
出处
期刊:Symposium on Principles of Database Systems 被引量:71
标识
DOI:10.1145/1265530.1265538
摘要

We consider the problem of constructing decision trees for entity identification from a given relational table. The input is a table containing information about a set of entities over a fixed set of attributes and a probability distribution over the set of entities that specifies the likelihood of the occurrence of each entity. The goal is to construct a decision tree that identifies each entity unambiguously by testing the attribute values such that the average number of tests is minimized. This classical problem finds such diverse applications as efficient fault detection, species identification in biology, and efficient diagnosis in the field of medicine. Prior work mainly deals with the special case where the input table is binary and the probability distribution over the set of entities is uniform. We study the general problem involving arbitrary input tables and arbitrary probability distributions over the set of entities. We consider a natural greedy algorithm and prove an approximation guarantee of O(rK • log N), where N is the number of entities and K is the maximum number of distinct values of an attribute. The value rK is a suitably defined Ramsey number, which is at most log K. We show that it is NP-hard to approximate the problem within a factor of Ω(log N), even for binary tables (i.e. K=2). Thus, for the case of binary tables, our approximation algorithm is optimal up to constant factors (since r2=2). In addition, our analysis indicates a possible way of resolving a Ramsey-theoretic conjecture by Erdos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sss发布了新的文献求助20
1秒前
冰激凌UP发布了新的文献求助10
2秒前
以筱完成签到,获得积分10
2秒前
2秒前
白河发布了新的文献求助10
3秒前
江雁完成签到,获得积分10
4秒前
4秒前
sky发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
苹果松完成签到,获得积分10
6秒前
6秒前
微笑的大树完成签到,获得积分10
6秒前
HeyHsc发布了新的文献求助10
7秒前
科研通AI2S应助Leohp采纳,获得10
8秒前
8秒前
闪闪凝梦完成签到 ,获得积分10
9秒前
10秒前
共享精神应助优美飞薇采纳,获得30
10秒前
小糊涂仙发布了新的文献求助10
10秒前
苹果松发布了新的文献求助10
11秒前
nenoaowu应助失眠的数据线采纳,获得50
12秒前
Zhouzhou应助杜ss采纳,获得10
12秒前
asd发布了新的文献求助10
12秒前
jgs发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
沟通亿心完成签到,获得积分10
14秒前
CodeCraft应助盈盈采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
学术蛔虫完成签到,获得积分10
19秒前
张同学快去做实验呀完成签到,获得积分10
20秒前
21发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106