Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

功能近红外光谱 计算机科学 独立成分分析 功能磁共振成像 人工智能 信号(编程语言) 血液氧合 模式识别(心理学) 信号处理 计算机视觉 雷达 心理学 神经科学 认知 前额叶皮质 程序设计语言 电信
作者
Tsukasa Funane,Hiroki Sato,Noriaki Yahata,Ryu Takizawa,Yukika Nishimura,Akihide Kinoshita,Takusige Katura,Hirokazu Atsumori,Masato Fukuda,Kiyoto Kasai,Hideaki Koizumi,Masashi Kiguchi
出处
期刊:Neurophotonics [SPIE - International Society for Optical Engineering]
卷期号:2 (1): 015003-015003 被引量:19
标识
DOI:10.1117/1.nph.2.1.015003
摘要

It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, p<0.05]. This result indicates that the MD-ICA method successfully separates fNIRS signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
爱吃西瓜发布了新的文献求助10
3秒前
3秒前
ding应助霍焱采纳,获得10
4秒前
小马甲应助cruise采纳,获得10
5秒前
5秒前
NexusExplorer应助Hhbbb采纳,获得10
6秒前
Sunnig盈发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
东病房楼发布了新的文献求助10
8秒前
GXL完成签到,获得积分10
10秒前
852应助虎啊虎啊采纳,获得10
11秒前
devilito发布了新的文献求助20
11秒前
大树完成签到 ,获得积分10
12秒前
领导范儿应助mk采纳,获得10
13秒前
13秒前
14秒前
16秒前
cc发布了新的文献求助10
16秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
阿静发布了新的文献求助10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
Angel应助科研通管家采纳,获得10
17秒前
老福贵儿应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770240
求助须知:如何正确求助?哪些是违规求助? 5583672
关于积分的说明 15423777
捐赠科研通 4903786
什么是DOI,文献DOI怎么找? 2638350
邀请新用户注册赠送积分活动 1586204
关于科研通互助平台的介绍 1541370