Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

功能近红外光谱 计算机科学 独立成分分析 功能磁共振成像 人工智能 信号(编程语言) 血液氧合 模式识别(心理学) 信号处理 计算机视觉 雷达 心理学 神经科学 认知 前额叶皮质 程序设计语言 电信
作者
Tsukasa Funane,Hiroki Sato,Noriaki Yahata,Ryu Takizawa,Yukika Nishimura,Akihide Kinoshita,Takusige Katura,Hirokazu Atsumori,Masato Fukuda,Kiyoto Kasai,Hideaki Koizumi,Masashi Kiguchi
出处
期刊:Neurophotonics [SPIE - International Society for Optical Engineering]
卷期号:2 (1): 015003-015003 被引量:19
标识
DOI:10.1117/1.nph.2.1.015003
摘要

It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, p<0.05]. This result indicates that the MD-ICA method successfully separates fNIRS signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Novoa应助Lasse采纳,获得10
1秒前
1秒前
1秒前
2秒前
安静羿关注了科研通微信公众号
3秒前
Sakura完成签到 ,获得积分10
3秒前
Vince完成签到,获得积分10
3秒前
4秒前
4秒前
卡皮巴拉不卡屁完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
5秒前
老迟到的冬瓜完成签到,获得积分10
5秒前
Melody完成签到,获得积分10
5秒前
5秒前
Jasper应助愉快的莹采纳,获得10
5秒前
badada完成签到,获得积分10
5秒前
Bao_o_o完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
笨蛋小章完成签到,获得积分10
8秒前
8秒前
朱子煊发布了新的文献求助10
8秒前
DNA完成签到,获得积分10
8秒前
梅菜菜发布了新的文献求助10
8秒前
yzz发布了新的文献求助10
8秒前
领导范儿应助duoduo7采纳,获得10
8秒前
CipherSage应助sunshine采纳,获得10
9秒前
我要发Nature完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助30
9秒前
娜娜酱油发布了新的文献求助10
10秒前
11秒前
Bao_o_o发布了新的文献求助10
11秒前
迷路的问蕊完成签到,获得积分20
11秒前
团结友爱发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791