Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

功能近红外光谱 计算机科学 独立成分分析 功能磁共振成像 人工智能 信号(编程语言) 血液氧合 模式识别(心理学) 信号处理 计算机视觉 雷达 心理学 神经科学 认知 前额叶皮质 程序设计语言 电信
作者
Tsukasa Funane,Hiroki Sato,Noriaki Yahata,Ryu Takizawa,Yukika Nishimura,Akihide Kinoshita,Takusige Katura,Hirokazu Atsumori,Masato Fukuda,Kiyoto Kasai,Hideaki Koizumi,Masashi Kiguchi
出处
期刊:Neurophotonics [SPIE - International Society for Optical Engineering]
卷期号:2 (1): 015003-015003 被引量:19
标识
DOI:10.1117/1.nph.2.1.015003
摘要

It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, p<0.05]. This result indicates that the MD-ICA method successfully separates fNIRS signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
姚晓完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
洛伊儿发布了新的文献求助10
3秒前
4秒前
arya完成签到,获得积分10
4秒前
5秒前
7秒前
背后以丹发布了新的文献求助10
8秒前
完美誉完成签到 ,获得积分10
9秒前
学术废柴发布了新的文献求助10
9秒前
凌儿响叮当完成签到 ,获得积分10
9秒前
12秒前
科研通AI6应助灵巧的傲柏采纳,获得20
12秒前
化学少女完成签到,获得积分10
12秒前
13秒前
14秒前
wdfddzh发布了新的文献求助80
15秒前
15秒前
hao完成签到,获得积分10
15秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
科研通AI6应助向阳采纳,获得10
18秒前
18秒前
董科研严完成签到,获得积分20
18秒前
ZHOUCHENG发布了新的文献求助10
18秒前
神勇友易完成签到,获得积分10
19秒前
完美世界应助宋宋采纳,获得10
19秒前
chutai完成签到,获得积分20
20秒前
我我轻轻完成签到 ,获得积分10
21秒前
lph完成签到 ,获得积分10
21秒前
123456789发布了新的文献求助10
22秒前
我是老大应助LLM采纳,获得10
22秒前
支浩阑完成签到,获得积分10
22秒前
Criminology34应助清脆的书桃采纳,获得10
22秒前
浮云应助机灵柚子采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666210
求助须知:如何正确求助?哪些是违规求助? 4879851
关于积分的说明 15116421
捐赠科研通 4825314
什么是DOI,文献DOI怎么找? 2583219
邀请新用户注册赠送积分活动 1537340
关于科研通互助平台的介绍 1495578