摘要
Reviews16 November 2004The Physiologic Basis of High-Altitude DiseasesJohn B. West, MD, PhDJohn B. West, MD, PhDFrom University of California, San Diego, La Jolla, California.Author, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-141-10-200411160-00010 SectionsAboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail Clinical PrinciplesThree major high-altitude diseasesAcute mountain sickness (headache, lightheadedness, fatigue, insomnia, anorexia)High-altitude pulmonary edema (dyspnea, reduced exercise tolerance, cough, tachycardia, crepitations)High-altitude cerebral edema (confusion, ataxia, mood changes, coma, papilledema)Other high-altitude conditionsChronic mountain sickness (severe polycythemia, headache, somnolence, fatigue, depression)Subacute mountain sickness (affects infants and adults; right-heart failure with peripheral edema)Retinal hemorrhage (common at extreme altitude but usually causes no visual impairment)Physiologic PrinciplesHypoxia of high altitude impairs physical performance, mental performance, and sleep.In acclimatization, hyperventilation is the most important feature. Acclimatization reduces but does not abolish the effects of hypoxia.Extreme altitude causes severe hypoxemia, respiratory alkalosis, and greatly reduced maximal oxygen ...References1. Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998; Suppl 27 25-64. [PMID: 9881522] CrossrefMedlineGoogle Scholar2. West JB, Readhead A. Working at high altitude: medical problems, misconceptions, and solutions. Observatory. 2004;124:1-14. Google Scholar3. Richalet JP, Donoso MV, Jiménez D, Antezana AM, Hudson C, Cortès G, et al. Chilean miners commuting from sea level to 4500 m: a prospective study. High Alt Med Biol. 2002;3:159-66. [PMID: 12162860] CrossrefMedlineGoogle Scholar4. Torricelli E. Letter of Torricelli to Michelangelo Ricci. 1644.. In: West JB, eds. High Altitude Physiology. Stroudsburg, PA: Hutchinson Ross; 1981:60-3. Google Scholar5. Manual of the ICAO Standard Atmosphere. Montreal, Quebec: International Civil Aviation Organization; 1964. Google Scholar6. West JB, Lahiri S, Maret KH, Peters RM, Pizzo CJ. Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J Appl Physiol. 1983;54:1188-94. [PMID: 6863078] CrossrefMedlineGoogle Scholar7. Semenza GL. Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest. 2000;106:809-12. [PMID: 11018065] CrossrefMedlineGoogle Scholar8. Cerretelli P. Gas exchange at high altitude.. In: West JB, eds. Pulmonary Gas Exchange. v II. New York: Academic Pr; 1980:97-147. Google Scholar9. Bigland-Ritchie B, Vollestad NK. Hypoxia and fatigue: how are they related?. In: Sutton JR, Houston CS, Coates G, eds. Hypoxia: The Tolerable Limits. Indianapolis, IN: Benchmark Pr; 1998:315-26; discussion 326-8. Google Scholar10. Suarez J, Alexander JK, Houston CS. Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol. 1987;60:137-42. [PMID: 3604926] CrossrefMedlineGoogle Scholar11. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al. Human gene for physical performance [Letter]. Nature. 1998;393:221-2. [PMID: 9607758] CrossrefMedlineGoogle Scholar12. McFarland RA. Psychophysiological implications of life at altitude and including the role of oxygen in the process of aging.. In: Yousef MK, Horvath SM, Bullard RW, eds. Physiological Adaptations: Desert and Mountain. New York: Academic Pr; 1972:157-81. Google Scholar13. Siesjo BK. Brain Energy Metabolism. New York: Wiley; 1978. Google Scholar14. Haddad GG, Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol. 1993;40:277-318. [PMID: 7680137] CrossrefMedlineGoogle Scholar15. Hossmann KA. The hypoxic brain. Insights from ischemia research. Adv Exp Med Biol. 1999;474:155-69. [PMID: 10635000] CrossrefMedlineGoogle Scholar16. Barcroft J, Cooke A, Hartridge H, Parsons TR, Parsons W. The flow of oxygen through the pulmonary epithelium. J Physiol (Lond). 1920;53:450-72. CrossrefGoogle Scholar17. Weil JV. Sleep at high altitude. High Alt Med Biol. 2004;5:180-9. [PMID: 15265339] CrossrefMedlineGoogle Scholar18. Lahiri S, Maret K, Sherpa MG. Dependence of high altitude sleep apnea on ventilatory sensitivity to hypoxia. Respir Physiol. 1983;52:281-301. [PMID: 6412339] CrossrefMedlineGoogle Scholar19. Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep. Am J Respir Crit Care Med. 2002;165:1251-60. [PMID: 11991874] CrossrefMedlineGoogle Scholar20. West JB, Hackett PH, Maret KH, Milledge JS, Peters RM, Pizzo CJ, et al. Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol. 1983;55:678-87. [PMID: 6415007] CrossrefMedlineGoogle Scholar21. Pugh LG. Blood volume and haemoglobin concentration at altitudes above 18,000 ft (5500 m). J Physiol (Lond). 1964;170:344-53. CrossrefGoogle Scholar22. Singh MV, Rawal SB, Tyagi AK. Body fluid status on induction, reinduction and prolonged stay at high altitude of human volunteers. Int J Biometeorol. 1990;34:93-7. [PMID: 2228301] CrossrefMedlineGoogle Scholar23. Pugh LGCE. Animals in high altitude: man above 5000 meters—mountain exploration.. In: Dill DB, eds. Handbook of Physiology. Adaptation to Environment. Washington, DC: American Physiological Society; 1984:861-8. Google Scholar24. Swenson ER. Renal function and fluid homeostasis.. In: Hornbein TF, Schoene RB, eds. High Altitude. An Exploration of Human Adaptation. New York: Marcel Dekker; 2001:525-68. Google Scholar25. Smith CA, Dempsey JA, Hornbein TF. Control of breathing at high altitude.. In: Hornbein TF, Schoene RB, eds. High Altitude. An Exploration of Human Adaptation. New York: Marcel Dekker; 2001:139-73. Google Scholar26. Rahn H, Otis AB. Man's respiratory response during and after acclimatization to high altitude. Am J Physiol. 1949;157:445-62. CrossrefMedlineGoogle Scholar27. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med. 1980;93:391-8. [PMID: 6776858] LinkGoogle Scholar28. Heaton RK, Grant I, McSweeny AJ, Adams KM, Petty TL. Psychologic effects of continuous and nocturnal oxygen therapy in hypoxemic chronic obstructive pulmonary disease. Arch Intern Med. 1983;143:1941-7. [PMID: 6625781] CrossrefMedlineGoogle Scholar29. Grant I, Prigatano GP, Heaton RK, McSweeny AJ, Wright EC, Adams KM. Progressive neuropsychologic impairment and hypoxemia. Relationship in chronic obstructive pulmonary disease. Arch Gen Psychiatry. 1987;44:999-1006. [PMID: 3675139] CrossrefMedlineGoogle Scholar30. West JB. Oxygen enrichment of room air to relieve the hypoxia of high altitude. Respir Physiol. 1995;99:225-32. [PMID: 7777705] CrossrefMedlineGoogle Scholar31. West JB, Wagner PD. Predicted gas exchange on the summit of Mt. Everest. Respir Physiol. 1980;42:1-16. [PMID: 7444223] CrossrefMedlineGoogle Scholar32. West JB. Human physiology at extreme altitudes on Mount Everest. Science. 1984;223:784-8. [PMID: 6364351] CrossrefMedlineGoogle Scholar33. Houston CS, Sutton JR, Cymerman A, Reeves JT. Operation Everest II: man at extreme altitude. J Appl Physiol. 1987;63:877-82. [PMID: 3654448] CrossrefMedlineGoogle Scholar34. Peacock AJ, Jones PL. Gas exchange at extreme altitude: results from the British 40th Anniversary Everest Expedition. Eur Respir J. 1997;10:1439-44. [PMID: 9230227] CrossrefMedlineGoogle Scholar35. Bartsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW. Acute mountain sickness: controversies and advances. High Alt Med Biol. 2004;5:110-24. [PMID: 15265333] CrossrefMedlineGoogle Scholar36. Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345:107-14. [PMID: 11450659] CrossrefMedlineGoogle Scholar37. Borgström L, Johannsson H, Siesjö BK. The relationship between arterial po2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand. 1975;93:423-32. [PMID: 1146584] CrossrefMedlineGoogle Scholar38. Harper AM, Glass HI. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry. 1965;28:449-52. [PMID: 5838479] CrossrefMedlineGoogle Scholar39. Schneider M, Bernasch D, Weymann J, Holle R, Bartsch P. Acute mountain sickness: influence of susceptibility, preexposure, and ascent rate. Med Sci Sports Exerc. 2002;34:1886-91. [PMID: 12471292] CrossrefMedlineGoogle Scholar40. Dumont L, Mardirosoff C, Tramer MR. Efficacy and harm of pharmacological prevention of acute mountain sickness: quantitative systematic review. BMJ. 2000;321:267-72. [PMID: 10915127] CrossrefMedlineGoogle Scholar41. Schoene RB. Unraveling the mechanism of high altitude pulmonary edema. High Alt Med Biol. 2004;5:125-35. [PMID: 15265334] CrossrefMedlineGoogle Scholar42. Bärtsch P, Vock P, Maggiorini M, Franciolli M, Fretz C, Schobersberger W, et al. Respiratory symptoms, radiographic and physiologic correlations at high altitude.. In: Sutton JR, Coates G, Remmers JE, eds. Hypoxia: The Adaptations. Toronto: BC Decker; 1990:241-45. Google Scholar43. Hackett PH, Creagh CE, Grover RF, Honigman B, Houston CS, Reeves JT, et al. High-altitude pulmonary edema in persons without the right pulmonary artery. N Engl J Med. 1980;302:1070-3. [PMID: 7366625] CrossrefMedlineGoogle Scholar44. Schoene RB, Swenson ER, Pizzo CJ, Hackett PH, Roach RC, Mills WJ, et al. The lung at high altitude: bronchoalveolar lavage in acute mountain sickness and pulmonary edema. J Appl Physiol. 1988;64:2605-13. [PMID: 3403445] CrossrefMedlineGoogle Scholar45. Penaloza D, Sime F. Circulatory dynamics during high altitude pulmonary edema. Am J Cardiol. 1969;23:369-78. [PMID: 5777686] CrossrefMedlineGoogle Scholar46. Hultgren HN, Lopez CE, Lundberg E, Miller H. Physiologic studies of pulmonary edema at high altitude. Circulation. 1964;29:393-408. [PMID: 14131411] CrossrefMedlineGoogle Scholar47. Antezana G, Leguia G, Guzman AM, Coudert J, Speilvogel H. Hemodynamic study of high altitude pulmonary edema (12,200 ft).. In: Brendel W, Zink RA, eds. High Altitude Physiology and Medicine. New York: Springer-Verlag; 1982:232-41. Google Scholar48. Hultgren HN, Grover RF, Hartley LH. Abnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema. Circulation. 1971;44:759-70. [PMID: 5115068] CrossrefMedlineGoogle Scholar49. Bärtsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O. Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991;325:1284-9. [PMID: 1922223] CrossrefMedlineGoogle Scholar50. Oelz O, Maggiorini M, Ritter M, Waber U, Jenni R, Vock P, et al. Nifedipine for high altitude pulmonary oedema. Lancet. 1989;2:1241-4. [PMID: 2573760] CrossrefMedlineGoogle Scholar51. Houston CS. Acute pulmonary edema of high altitude. N Engl J Med. 1960;263:478-80. [PMID: 14403413] CrossrefMedlineGoogle Scholar52. Hackett PH, Bertman J, Rodriguez G, Tenney J. Pulmonary edema fluid protein in high-altitude pulmonary edema [Letter]. JAMA. 1986;256:36. [PMID: 3712705] CrossrefMedlineGoogle Scholar53. Schoene RB, Hackett PH, Henderson WR, Sage EH, Chow M, Roach RC, et al. High-altitude pulmonary edema. Characteristics of lung lavage fluid. JAMA. 1986;256:63-9. [PMID: 3012134] CrossrefMedlineGoogle Scholar54. Swenson ER, Maggiorini M, Mongovin S, Gibbs JS, Greve I, Mairbäurl H, et al. Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA. 2002;287:2228-35. [PMID: 11980523] CrossrefMedlineGoogle Scholar55. Bärtsch P, Mairbäurl H, Swenson ER, Maggiorini M. High altitude pulmonary oedema. Swiss Med Wkly. 2003;133:377-84. [PMID: 12947525] MedlineGoogle Scholar56. West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R. Stress failure in pulmonary capillaries. J Appl Physiol. 1991;70:1731-42. [PMID: 2055852] CrossrefMedlineGoogle Scholar57. Tsukimoto K, Mathieu-Costello O, Prediletto R, Elliott AR, West JB. Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol. 1991;71:573-82. [PMID: 1718936] CrossrefMedlineGoogle Scholar58. Elliott AR, Fu Z, Tsukimoto K, Prediletto R, Mathieu-Costello O, West JB. Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol. 1992;73:1150-8. [PMID: 1400030] CrossrefMedlineGoogle Scholar59. West JB, Mathieu-Costello O. Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Annu Rev Physiol. 1999;61:543-72. [PMID: 10099701] CrossrefMedlineGoogle Scholar60. West JB, Mathieu-Costello O. Strength of the pulmonary blood-gas barrier. Respir Physiol. 1992;88:141-8. [PMID: 1626133] CrossrefMedlineGoogle Scholar61. West JB. Thoughts on the pulmonary blood-gas barrier. Am J Physiol Lung Cell Mol Physiol. 2003;285:L501-13. [PMID: 12902315] CrossrefMedlineGoogle Scholar62. West JB, Mathieu-Costello O. High altitude pulmonary edema is caused by stress failure of pulmonary capillaries. Int J Sports Med. 1992;13 Suppl 1 S54-8. [PMID: 1483792] CrossrefMedlineGoogle Scholar63. Tozzi CA, Poiani GJ, Harangozo AM, Boyd CD, Riley DJ. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest. 1989;84:1005-12. [PMID: 2668338] CrossrefMedlineGoogle Scholar64. Singh I, Kapila CC, Khanna PK, Nanda RB, Rao BD. High-altitude pulmonary oedema. Lancet. 1965;191:229-34. [PMID: 14238062] CrossrefMedlineGoogle Scholar65. Bärtsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O. Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991;325:1284-9. [PMID: 1922223] CrossrefMedlineGoogle Scholar66. Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, et al. Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med. 2002;346:1631-6. [PMID: 12023995] CrossrefMedlineGoogle Scholar67. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation. 2001;104:424-8. [PMID: 11468204] CrossrefMedlineGoogle Scholar68. Hackett PH, Roach RC. High altitude cerebral edema. High Alt Med Biol. 2004;5:136-46. [PMID: 15265335] CrossrefMedlineGoogle Scholar69. Singh I, Khanna PK, Srivastava MC, Lal M, Roy SB, Subramanyam CS. Acute mountain sickness. N Engl J Med. 1969;280:175-84. [PMID: 5782719] CrossrefMedlineGoogle Scholar70. Houston CS, Dickinson J. Cerebral form of high-altitude illness. Lancet. 1975;2:758-61. [PMID: 52782] CrossrefMedlineGoogle Scholar71. Dickinson J, Heath D, Gosney J, Williams D. Altitude-related deaths in seven trekkers in the Himalayas. Thorax. 1983;38:646-56. [PMID: 6623417] CrossrefMedlineGoogle Scholar72. Hackett PH, Yarnell PR, Hill R, Reynard K, Heit J, McCormick J. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA. 1998;280:1920-5. [PMID: 9851477] CrossrefMedlineGoogle Scholar73. Ferrazzini G, Maggiorini M, Kriemler S, Bärtsch P, Oelz O. Successful treatment of acute mountain sickness with dexamethasone. Br Med J Clin Res Ed. 1987;294:1380-2. [PMID: 3109663] CrossrefMedlineGoogle Scholar74. Hurtado A. Chronic mountain sickness. JAMA. 1942;120:1278-82. CrossrefGoogle Scholar75. Kryger M, McCullough R, Doekel R, Collins D, Weil JV, Grover RF. Excessive polycythemia of high altitude: role of ventilatory drive and lung disease. Am Rev Respir Dis. 1978;118:659-66. [PMID: 707889] CrossrefMedlineGoogle Scholar76. Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, et al. Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol. 1998;106:385-400. [PMID: 9696153] CrossrefMedlineGoogle Scholar77. Sui GJ, Liu YH, Cheng XS, Anand IS, Harris E, Harris P, et al. Subacute infantile mountain sickness. J Pathol. 1988;155:161-70. [PMID: 2969047] CrossrefMedlineGoogle Scholar78. Anand IS, Malhotra RM, Chandrashekhar Y, Bali HK, Chauhan SS, Jindal SK, et al. Adult subacute mountain sickness—a syndrome of congestive heart failure in man at very high altitude. Lancet. 1990;335:561-5. [PMID: 1968575] CrossrefMedlineGoogle Scholar79. Hecht HH, Kuida H, Lange RL, Horne JL, Brown AM. Brisket disease. III. Clinical features and hemodynamic observations in altitude-dependent right heart failure of cattle. Am J Med. 1962;32:171-83. [PMID: 13905831] CrossrefMedlineGoogle Scholar80. Clarke C, Duff J. Mountain sickness, retinal haemorrhages, and acclimatisation on Mount Everest in 1975. Br Med J. 1976;2:495-7. [PMID: 953646] CrossrefMedlineGoogle Scholar Author, Article, and Disclosure InformationAuthors: John B. West, MD, PhDAffiliations: From University of California, San Diego, La Jolla, California.Grant Support: By National Institutes of Health grant RO1 HL 60698.Disclosures: None disclosed.Corresponding Author: John B. West, MD, PhD, Department of Medicine, University of California, San Diego, 0623A, 9500 Gilman Drive, La Jolla, CA 92093-0623; e-mail, [email protected]edu. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetailsSee AlsoThe Physiologic Basis of High-Altitude Diseases Buddha Basnyat The Physiologic Basis of High-Altitude Diseases Anil Pandit The Physiologic Basis of High-Altitude Diseases Matiram Pun The Physiologic Basis of High-Altitude Diseases John B. West Metrics Cited byHuman performance augmentation: the importance of integrative physiological quantificationNutrition and Hydration for High-Altitude Alpinism: A Narrative ReviewCharacteristics of oxygenic-thermal coupled jet driven by concentration difference and temperature difference at high altitudesComparison of two oxygen saturation targets to decide on hospital discharge of infants with viral bronchiolitis living at high altitudes: a cost-effectiveness analysisMean corpuscular haemoglobin concentration (MCHC): a new biomarker for high-altitude pulmonary edema in the Ecuadorian AndesHuman adaptation to high altitude: a review of convergence between genomic and proteomic signaturesThe human brain in a high altitude natural environment: A reviewGenomic signatures of high-altitude adaptation and chromosomal polymorphism in geladasToward the Discovery of a Novel Class of Leads for High Altitude Disorders by Virtual Screening and Molecular Dynamics Approaches Targeting Carbonic AnhydraseHigh altitude exposure affects male reproductive parameters: could it also affect the prostate?Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasisHigh Altitude Sickness: Environmental Stressor and Altered Physiological ResponseHypobaric hypoxia deteriorates bone mass and strength in miceElucidating the combined effect of intermittent hypoxia training and acetazolamide on hypoxia induced hematological and physiological changesEffect of pulmonary hypertension on exercise capacity and gas exchange in patients with chronic obstructive pulmonary disease living at high altitudeHumans at extreme altitudesExercise Capacity, Ventilatory Response, and Gas Exchange in COPD Patients With Mild to Severe Obstruction Residing at High AltitudeComorbidities of Patients With Idiopathic Pulmonary Fibrosis in Four Latin American Countries. Are There Differences by Country and Altitude?Splenic contraction is enhanced by exercise at simulated high altitudeEffects of High Altitude on Sleep and Respiratory SystemBASAN index (Body mass index, Age, Sex, Arterial hypertension and Neck circumference) predicts severe apnoea in adults living at high altitudeEmerging role of carbonic anhydrase inhibitorsHypoxia and Inflammation: Insights From High-Altitude PhysiologyBioelectrical Impedance Vector Analysis: A Valuable Tool to Monitor Daily Body Hydration Dynamics at AltitudeTibetan medicine Duoxuekang ameliorates hypobaric hypoxia-induced brain injury in mice by restoration of cerebrovascular functionUsing Composite Phenotypes to Reveal Hidden Physiological Heterogeneity in High-Altitude Acclimatization in a Chinese Han Longitudinal CohortPulmonary Hypertension in Acute and Chronic High Altitude Maladaptation DisordersDiversity of SARS-CoV-2 isolates driven by pressure and health indexThe effects of high altitude ascent on splenic contraction and the diving response during voluntary apnoeaA network physiology approach to oxygen saturation variability during normobaric hypoxiaArterial blood gases and ventilation at rest by age and sex in an adult Andean population resident at high altitudeEstablishment of an experimental rat model of high altitude cerebral edema by hypobaric hypoxia combined with temperature fluctuationEchinacoside prevents hypoxic pulmonary hypertension by regulating the pulmonary artery functionShorter telomere length, higher telomerase activity in association with tankyrase gene polymorphism contribute to high-altitude pulmonary edemaProgress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today?Does intermittent exposure to high altitude increase the risk of cardiovascular disease in workers? A systematic narrative reviewThe effects of genetic deletion of Macrophage migration inhibitory factor on the chronically hypoxic pulmonary circulationEstrogen receptor (ESR1 and ESR2)-mediated activation of eNOS–NO–cGMP pathway facilitates high altitude acclimatizationHypoxic Exposure Increases Energy Expenditure by Increasing Carbohydrate Oxidation in MiceBlue Toes at High Altitude: Peripheral CyanosisThe interactive effects of acute exercise and hypoxia on cognitive performance: A narrative reviewNotfälle durch UmwelteinflüsseChronic Exposure to High Altitude: Synaptic, Astroglial and Memory ChangesAssociation between ACTN3 and acute mountain sicknessEvaluating the Highway Tunnel Construction in Western Sichuan Plateau Considering Vocational Health and EnvironmentEffects of altitude on chronotype orientations in relation to cardiorespiratory and hematological quantities of college students in EthiopiaRespiratory Physiology for the AnesthesiologistSpectrum of Thrombotic Disorders in Soldiers Serving in High-altitude AreasInterplay Between Optimal Ventilation and Gas Transport in a Model of the Human LungVasoconstriction pulmonaire hypoxique : de la physiopathologie à la cliniqueThe Effects of High Altitude on Glucose Homeostasis, Metabolic Control, and Other Diabetes-Related Parameters: From Animal Studies to Real LifeIn vivo assessment of heart function under chronic hypoxic stress with volumetric optoacoustic tomographyThe usefulness of prophylactic use of acetazolamide in subjects with acute mountain sicknessProtective effects of melatonin against fluoride-induced oxidative stress in rats at high altitudeThe Special Case of High-Altitude HeadacheHöhentrekking und Höhenbergsteigen bei Hypertonie und koronarer HerzkrankheitAkute HöhenkrankheitNeuronal and vascular deficits following chronic adaptation to high altitudeAcute Mountain Sickness is Reduced Following 2 Days of Staging During Subsequent Ascent to 4300 mHemoglobin Changes After Long-Term Intermittent Work at High AltitudeHypobaric birth room may prevent intraventricular hemorrhage in extremely low birth weights infantsIncreased Cytokines at High Altitude: Lack of Effect of Ibuprofen on Acute Mountain Sickness, Physiological Variables, or Cytokine LevelsModulation of hepatic gene expression profiles by vitamin B 1 , vitamin B 2 , and niacin supplementation in mice exposed to acute hypoxiaRight Heart-Pulmonary Circulation at High Altitude and the Development of Subclinical Pulmonary Interstitial EdemaIn response to HMOX1 microsatellite polymorphism by Cao et alRespiratory Health Benefits and Risks of Living at Moderate AltitudeProfile of pulmonary embolism in service personnel posted at high altitude areaAltitude-Related IllnessesEnfermedades por exposición a la alturaCritical Life Functions: Can Placebo Replace Oxygen?The Dry Puna as an ecological megapatch and the peopling of South America: Technology, mobility, and the development of a late Pleistocene/early Holocene Andean hunter-gatherer tradition in northern ChileTotal Body Water Dynamics Estimated with Bioelectrical Impedance Vector Analysis and B-Type Natriuretic Peptide After Exposure to Hypobaric Hypoxia: A Field StudyHigh Altitude Pulmonary Edema in a Mining Worker With an Abnormal Rise in Pulmonary Artery Pressure in Response to Acute Hypoxia Without Prior History of High Altitude Pulmonary EdemaImpact of High Altitude on Military OperationsRisk of high altitude pulmonary edema and telomere lengthCaudwell Xtreme Everest: A prospective study of the effects of environmental hypoxia on cognitive functioningSolnatide Demonstrates Profound Therapeutic Activity in a Rat Model of Pulmonary Edema Induced by Acute Hypobaric Hypoxia and ExerciseEffect of acute hypoxia on cognition: A systematic review and meta-regression analysisHMOX1 Promoter Microsatellite Polymorphism Is Not Associated With High Altitude Pulmonary Edema in Han ChineseIntermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained ratsCentral Sleep Apnea, Hypoventilation Syndrome, and Sleep in High AltitudeA Review of Safety and Hazards Associated With the Artificial PancreasThin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary HypertensionComment on “Soluble Urokinase-Type Plasminogen Activator Receptor Plasma Concentration May Predict Susceptibility to High Altitude Pulmonary Edema”Mass Transport: Circulatory System with Emphasis on Nonendothermic SpeciesSphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxiaAcute mountain sickness and oxygen saturationLe xénon : du gaz rare au produit dopantAcute mountain sickness in children at Jade MountainResponse to Letter by Gaurav Sikri and Srinivasa ABHypoxemia as a model for high altitude and cardiovascular risk reductionHypoxic pulmonary hypertension in chronic lung diseases: novel vasoconstrictor pathwaysCan sildenafil improve physical performance at altitude? Current scientific evidenceDifferent Placebos, Different Mechanisms, Different Outcomes: Lessons for Clinical TrialsOxidized Low Density Lipoprotein Among the Elderly in Qinghai-Tibet PlateauEffects of Positive Airway Pressure on Patients with Obstructive Sleep Apnea during Acute Ascent to AltitudePrediction of Physiological Responses and Performance at Altitude Using the 6-Minute Walk Test in Normoxia and HypoxiaGlucose Homeostasis During Short-term and Prolonged Exposure to High AltitudesHematopoietic Stem Cells and Chronic Hypoxia-Induced Pulmonary Vascular RemodellingHöhentrekking und Höhenbergsteigen bei Hypertonie und koronarer HerzkrankheitAkute Höhenkrankheit (AMS)Pulmonary vascular dysfunction in ARDSDietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heartNo Evidence of Intracranial Hypertension in Trekkers with Acute Mountain Sickness When Assessed Noninvasively with Distortion Product Otoacoustic EmissionsChanges in the Levels of Cytokines in Both Diabetic/Non-Diabetic Type I Children Living in a Moderate Altitude Area in Saudi ArabiaCardiovascular Medicine at High AltitudeHigh‐altitude Pulmonary Edema: ReviewPhysiology of high-altitude acclimatizationAnuric Acute Kidney Injury Induced by Acute Mountain Sickness Prophylaxis With AcetazolamideRegional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 mTravelling to altitudePhysiology in Medicine: Acute altitude exposure in patients with pulmonary and cardiovascular diseaseIron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in ratsThe α and Δ Isoforms of CREB1 Are Required to Maintain Normal Pulmonary Vascular ResistanceNon-high altitude methods for rapid screening of susceptibility to acute mountain sicknessNew insights of aquaporin 5 in the pathogenesis of high altitude pulmonary edemaHigh altitude syndromes at intermediate altitudes: A pilot study in the Australian AlpsRecommendations for resuscitation after ascent to high altitude and in aircraftsVEGFA SNPs and transcriptional factor binding sites associated with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan PlateauEGLN1 variants influence expression and S a O 2 levels to associate with high-altitude pulmonary oedema and adaptationNewborn oxygen saturation at mild altitude versus sea level: implications for neonatal screening for critical congenital heart diseaseEffects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposureHypoxia-Induced Inflammation in the LungAConstruction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell–drug interactions in a dynamic hypoxia microenvironmentEffects of High Altitude on Sleep and Respiratory System and Theirs AdaptationsChinese Herbal Medicine for Acute Mountain Sickness: A Systematic Review of Randomized Controlled TrialsSNPs and TFBS Associated with High Altitude Sickness*KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude