磷脂酰丝氨酸
细胞生物学
磷脂酶
程序性细胞死亡
鞘磷脂
细胞凋亡
神经酰胺
化学
生物
生物化学
磷脂
膜
作者
Karl S. Lang,Philipp A. Lang,Christian Bauer,Christophe Duranton,Thomas Wieder,Stephan M. Huber,Florian Läng
摘要
Erythrocyte injury such as osmotic shock, oxidative stress or energy depletion stimulates the formation of prostaglandin E2 through activation of cyclooxygenase which in turn activates a Ca2+ permeable cation channel. Increasing cytosolic Ca2+ concentrations activate Ca2+ sensitive K+ channels leading to hyperpolarization, subsequent loss of KCl and (further) cell shrinkage. Ca2+ further stimulates a scramblase shifting phosphatidylserine from the inner to the outer cell membrane. The scramblase is sensitized for the effects of Ca2+ by ceramide which is formed by a sphingomyelinase following several stressors including osmotic shock. The sphingomyelinase is activated by platelet activating factor PAF which is released by activation of phospholipase A2. Phosphatidylserine at the erythrocyte surface is recognised by macrophages which engulf and degrade the affected cells. Moreover, phosphatidylserine exposing erythrocytes may adhere to the vascular wall and thus interfere with microcirculation. Erythrocyte shrinkage and phosphatidylserine exposure ('eryptosis') mimic features of apoptosis in nucleated cells which however, involves several mechanisms lacking in erythrocytes. In kidney medulla, exposure time is usually too short to induce eryptosis despite high osmolarity. Beyond that high Cl- concentrations inhibit the cation channel and high urea concentrations the sphingomyelinase. Eryptosis is inhibited by erythropoietin which thus extends the life span of circulating erythrocytes. Several conditions trigger premature eryptosis thus favouring the development of anemia. On the other hand, eryptosis may be a mechanism of defective erythrocytes to escape hemolysis. Beyond their significance for erythrocyte survival and death the mechanisms involved in 'eryptosis' may similarly contribute to apoptosis of nucleated cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI