满射函数
数学
半群
巴拿赫空间
耗散算子
兰姆达
纯数学
耗散系统
操作员(生物学)
收缩(语法)
类型(生物学)
离散数学
物理
量子力学
基因
内科学
生物
抑制因子
转录因子
化学
医学
生物化学
生态学
作者
Christian Budde,Sven‐Ake Wegner
摘要
The famous 1960s Lumer–Phillips theorem states that a closed and densely defined operator $A\\colon \\operatorname{D}(A)\\subseteq X \\to X$ on a Banach space $X$ generates a strongly continuous contraction semigroup if and only if $(A,\\operatorname{D}(A))$ is dissipative and the range of $\\lambda-A$ is surjective in $X$ for some $\\lambda>0$. In this paper, we establish a version of this result for bi-continuous semigroups and apply the latter amongst other examples to the transport equation as well as to flows on infinite networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI