超级电容器
材料科学
电解质
碳纤维
电容
多孔性
化学工程
生物量(生态学)
电容器
电极
复合材料
化学
电压
电气工程
复合数
海洋学
地质学
工程类
物理化学
作者
Yali Jiang,Jie Chen,Qingxin Zeng,Zhuo Zou,Juan Li,Lingzhi Zeng,Wei Sun,Chang Ming Li
标识
DOI:10.1016/j.jcis.2021.12.144
摘要
Sub-1 nm pores can lead to an anomalous increase in the supercapacitive performance [1], but it still faces great challenges from its relatively low sub-1 nm pore content, complicated preparation process, low yield and high cost. Here we successfully prepared a sub-1 nm pore-rich carbon from biomass wastes using a facile method by pre-treating walnut shell powder at 380 ℃ in air for different times to delicately tailor carbon defects, followed by KOH activation at 700 ℃. The as-prepared optimal material delivers the highest sub-1 nm pore content (Vsub-1 nm = 0.57 cm3 g-1, Vsub-1 nm/Vt = 58.4 %) among all reported porous carbons. A supercapacitor made from the material accomplishes an ultrahigh specific capacitance of 298.7F g-1 at 1 A g-1 in a two-electrode device, excellent rate capability (78.8 % retention from 1 to 10 A g-1) and long-cyclic life (94 % retention after 10,000 cycles at 10 A g-1) in KOH. Even in Et4NBF4 electrolyte that is often used in commercial supercapacitors, a high energy density of 82.8 Wh kg-1 at 7 kW kg-1 and excellent cycling performance (90 % retention after 10,000 cycles at 5 A g-1) can be achieved, ranking the best among all reported carbon-based electrical double layer capacitors tested in the same electrolyte. More importantly, it drives a light-emitting-diode (LED) to operate for as long as 20 min, vividly demonstrating the great potential of sub-1 nm pore-rich carbon-based high performance supercapacitors in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI