Analyzing surface electromyography signals to predict fatigue in Longissimus thoracis and Iliocostalis Cervicis muscles: A statistical model

肌电图 胸最长肌 工作(物理) 肌肉疲劳 小波 肌肉疲劳 物理医学与康复 数学 统计 计算机科学 物理疗法 计量经济学 医学 工程类 人工智能 机械工程 外科 温柔
作者
Hamed Salmanzadeh,Maryam Doroodi
出处
期刊:Human Factors and Ergonomics in Manufacturing & Service Industries [Wiley]
卷期号:32 (4): 335-344 被引量:3
标识
DOI:10.1002/hfm.20946
摘要

Abstract Given that people in many jobs suffer from intense pressure being imposed on their muscles, work‐related disabilities such as musculoskeletal disorders have turned into a major concern in industrial countries. Considering the significant financial and physical burden these disorders can put on people and society as a whole, preventing these issues seems more reasonable than remedying them. In this respect, there is a need for further studies concerning the prediction of muscle fatigue and activity under different working conditions. Accordingly, the present study considers an important aspect of this issue by focusing on postures in which the workers do not have access to the work station in the frontal direction. More specifically, the main purpose of this study is to present a statistical model to predict muscle fatigue, for which electromyographic signals are collected from the muscles of individuals while working at a simulated workstation, according to which the activities of the Longissimus thoracis and Iliocostalis Cervicis muscles are evaluated. Afterward, the wavelet transform is employed via Rbio 3.1 function at seven levels to process the collected signals, followed by using the normal mean absolute value index for feature extraction. Finally, some statistical models are created by the generalized estimating equation method. According to the results, posture factors, assembly cycle time, and rest intervals between cycles, which are variables, revealed significant impacts ( p < .05) on muscle fatigue. It should be mentioned that the most suitable levels of the mentioned variables are also determined based on the Taguchi design of the conducted experiments. The presented statistical models can be used for designing and comparing workstations with respect to pressure on muscles for more effectively assigning workstations to employees, planning, and scheduling work cycles, and designing industrial machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激流勇进wb完成签到 ,获得积分10
刚刚
你小子发布了新的文献求助10
刚刚
张宇豪发布了新的文献求助10
1秒前
打打应助清修采纳,获得10
3秒前
4秒前
4秒前
4秒前
bkagyin应助爱笑灵雁采纳,获得10
4秒前
情怀应助刘玲采纳,获得10
5秒前
顾矜应助尺素寸心采纳,获得10
5秒前
5秒前
6秒前
warmth完成签到,获得积分10
6秒前
6秒前
萌面大侠完成签到,获得积分10
7秒前
陀飞轮完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
李健应助小石头采纳,获得10
8秒前
可乐发布了新的文献求助10
8秒前
你小子完成签到,获得积分10
9秒前
jialin发布了新的文献求助10
11秒前
爹爹发布了新的文献求助10
11秒前
13秒前
13秒前
15秒前
嘿嘿应助德玛西亚采纳,获得10
15秒前
16秒前
打打应助陀飞轮采纳,获得10
17秒前
尺素寸心发布了新的文献求助10
18秒前
冉宝完成签到,获得积分10
20秒前
20秒前
刘玲发布了新的文献求助10
21秒前
爱笑灵雁发布了新的文献求助10
21秒前
张宇豪完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
brightface123发布了新的文献求助10
23秒前
尺素寸心完成签到,获得积分10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687