Analyzing surface electromyography signals to predict fatigue in Longissimus thoracis and Iliocostalis Cervicis muscles: A statistical model

肌电图 胸最长肌 工作(物理) 肌肉疲劳 小波 肌肉疲劳 物理医学与康复 数学 统计 计算机科学 物理疗法 计量经济学 医学 工程类 人工智能 机械工程 外科 温柔
作者
Hamed Salmanzadeh,Maryam Doroodi
出处
期刊:Human Factors and Ergonomics in Manufacturing & Service Industries [Wiley]
卷期号:32 (4): 335-344 被引量:3
标识
DOI:10.1002/hfm.20946
摘要

Abstract Given that people in many jobs suffer from intense pressure being imposed on their muscles, work‐related disabilities such as musculoskeletal disorders have turned into a major concern in industrial countries. Considering the significant financial and physical burden these disorders can put on people and society as a whole, preventing these issues seems more reasonable than remedying them. In this respect, there is a need for further studies concerning the prediction of muscle fatigue and activity under different working conditions. Accordingly, the present study considers an important aspect of this issue by focusing on postures in which the workers do not have access to the work station in the frontal direction. More specifically, the main purpose of this study is to present a statistical model to predict muscle fatigue, for which electromyographic signals are collected from the muscles of individuals while working at a simulated workstation, according to which the activities of the Longissimus thoracis and Iliocostalis Cervicis muscles are evaluated. Afterward, the wavelet transform is employed via Rbio 3.1 function at seven levels to process the collected signals, followed by using the normal mean absolute value index for feature extraction. Finally, some statistical models are created by the generalized estimating equation method. According to the results, posture factors, assembly cycle time, and rest intervals between cycles, which are variables, revealed significant impacts ( p < .05) on muscle fatigue. It should be mentioned that the most suitable levels of the mentioned variables are also determined based on the Taguchi design of the conducted experiments. The presented statistical models can be used for designing and comparing workstations with respect to pressure on muscles for more effectively assigning workstations to employees, planning, and scheduling work cycles, and designing industrial machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moxin完成签到,获得积分10
刚刚
lin完成签到,获得积分10
刚刚
100完成签到,获得积分10
刚刚
刚刚
天机鲁比发布了新的文献求助30
刚刚
动听的青曼完成签到,获得积分10
1秒前
思源应助淡淡的酸奶采纳,获得10
1秒前
皮皮虾完成签到,获得积分10
1秒前
彩色梦安发布了新的文献求助10
1秒前
隐形曼青应助gaogao采纳,获得10
2秒前
scainiao完成签到,获得积分10
2秒前
yulin关注了科研通微信公众号
2秒前
西湖渔夫完成签到,获得积分10
2秒前
zhh完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
樂楽发布了新的文献求助10
2秒前
3秒前
无敌阿东完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
飘逸子轩完成签到,获得积分10
4秒前
koreyoshi发布了新的文献求助10
4秒前
4秒前
mysci发布了新的文献求助10
4秒前
思源应助yuyu采纳,获得10
5秒前
ting完成签到,获得积分10
5秒前
5秒前
李爱国应助Luffy采纳,获得10
5秒前
酷炫柔发布了新的文献求助10
5秒前
6秒前
曲意风华完成签到,获得积分10
6秒前
6秒前
怕黑雨竹完成签到,获得积分10
7秒前
年年完成签到,获得积分10
7秒前
lxz关注了科研通微信公众号
7秒前
8秒前
JMrider完成签到,获得积分10
8秒前
忐忑的妙柏完成签到,获得积分10
9秒前
YY发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219