Analyzing surface electromyography signals to predict fatigue in Longissimus thoracis and Iliocostalis Cervicis muscles: A statistical model

肌电图 胸最长肌 工作(物理) 肌肉疲劳 小波 肌肉疲劳 物理医学与康复 数学 统计 计算机科学 物理疗法 计量经济学 医学 工程类 人工智能 机械工程 外科 温柔
作者
Hamed Salmanzadeh,Maryam Doroodi
出处
期刊:Human Factors and Ergonomics in Manufacturing & Service Industries [Wiley]
卷期号:32 (4): 335-344 被引量:3
标识
DOI:10.1002/hfm.20946
摘要

Abstract Given that people in many jobs suffer from intense pressure being imposed on their muscles, work‐related disabilities such as musculoskeletal disorders have turned into a major concern in industrial countries. Considering the significant financial and physical burden these disorders can put on people and society as a whole, preventing these issues seems more reasonable than remedying them. In this respect, there is a need for further studies concerning the prediction of muscle fatigue and activity under different working conditions. Accordingly, the present study considers an important aspect of this issue by focusing on postures in which the workers do not have access to the work station in the frontal direction. More specifically, the main purpose of this study is to present a statistical model to predict muscle fatigue, for which electromyographic signals are collected from the muscles of individuals while working at a simulated workstation, according to which the activities of the Longissimus thoracis and Iliocostalis Cervicis muscles are evaluated. Afterward, the wavelet transform is employed via Rbio 3.1 function at seven levels to process the collected signals, followed by using the normal mean absolute value index for feature extraction. Finally, some statistical models are created by the generalized estimating equation method. According to the results, posture factors, assembly cycle time, and rest intervals between cycles, which are variables, revealed significant impacts ( p < .05) on muscle fatigue. It should be mentioned that the most suitable levels of the mentioned variables are also determined based on the Taguchi design of the conducted experiments. The presented statistical models can be used for designing and comparing workstations with respect to pressure on muscles for more effectively assigning workstations to employees, planning, and scheduling work cycles, and designing industrial machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
布丁完成签到 ,获得积分10
2秒前
3秒前
VQM232发布了新的文献求助10
3秒前
3秒前
4秒前
lijunzhang发布了新的文献求助10
4秒前
orixero应助大花采纳,获得10
5秒前
丘比特应助工艺员采纳,获得10
5秒前
浮游应助杨树天牛采纳,获得10
6秒前
8秒前
上官若男应助自觉的醉薇采纳,获得10
10秒前
小余同学发布了新的文献求助10
10秒前
无私逊完成签到,获得积分10
10秒前
迷途羔羊完成签到,获得积分10
10秒前
你好发布了新的文献求助10
11秒前
11秒前
jiang发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
lalala发布了新的文献求助20
14秒前
lijunzhang完成签到,获得积分10
14秒前
FIGMA发布了新的文献求助10
14秒前
15秒前
凶狠的期待发布了新的文献求助100
15秒前
Bosen发布了新的文献求助10
16秒前
17秒前
木头人应助自觉紫安采纳,获得10
18秒前
mys发布了新的文献求助20
22秒前
23秒前
24秒前
张蕊发布了新的文献求助10
26秒前
27秒前
欣慰煎蛋应助科研通管家采纳,获得10
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548