Analyzing surface electromyography signals to predict fatigue in Longissimus thoracis and Iliocostalis Cervicis muscles: A statistical model

肌电图 胸最长肌 工作(物理) 肌肉疲劳 小波 肌肉疲劳 物理医学与康复 数学 统计 计算机科学 物理疗法 计量经济学 医学 工程类 人工智能 机械工程 外科 温柔
作者
Hamed Salmanzadeh,Maryam Doroodi
出处
期刊:Human Factors and Ergonomics in Manufacturing & Service Industries [Wiley]
卷期号:32 (4): 335-344 被引量:3
标识
DOI:10.1002/hfm.20946
摘要

Abstract Given that people in many jobs suffer from intense pressure being imposed on their muscles, work‐related disabilities such as musculoskeletal disorders have turned into a major concern in industrial countries. Considering the significant financial and physical burden these disorders can put on people and society as a whole, preventing these issues seems more reasonable than remedying them. In this respect, there is a need for further studies concerning the prediction of muscle fatigue and activity under different working conditions. Accordingly, the present study considers an important aspect of this issue by focusing on postures in which the workers do not have access to the work station in the frontal direction. More specifically, the main purpose of this study is to present a statistical model to predict muscle fatigue, for which electromyographic signals are collected from the muscles of individuals while working at a simulated workstation, according to which the activities of the Longissimus thoracis and Iliocostalis Cervicis muscles are evaluated. Afterward, the wavelet transform is employed via Rbio 3.1 function at seven levels to process the collected signals, followed by using the normal mean absolute value index for feature extraction. Finally, some statistical models are created by the generalized estimating equation method. According to the results, posture factors, assembly cycle time, and rest intervals between cycles, which are variables, revealed significant impacts ( p < .05) on muscle fatigue. It should be mentioned that the most suitable levels of the mentioned variables are also determined based on the Taguchi design of the conducted experiments. The presented statistical models can be used for designing and comparing workstations with respect to pressure on muscles for more effectively assigning workstations to employees, planning, and scheduling work cycles, and designing industrial machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助an12138采纳,获得10
刚刚
刚刚
1秒前
1秒前
铃旅完成签到,获得积分10
1秒前
1秒前
joni发布了新的文献求助10
2秒前
稳重的向松完成签到,获得积分20
2秒前
Orange应助1234采纳,获得10
2秒前
上官若男应助超级的海秋采纳,获得10
2秒前
2秒前
经过完成签到,获得积分10
3秒前
英俊的铭应助YuenYuen采纳,获得10
3秒前
红炉点血完成签到,获得积分10
3秒前
卓儿发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
黄迪迪发布了新的文献求助10
5秒前
5秒前
残落人间发布了新的文献求助10
5秒前
5秒前
DUANYALI发布了新的文献求助10
6秒前
CY发布了新的文献求助10
6秒前
愉快迎南发布了新的文献求助10
6秒前
小飞侠完成签到,获得积分10
6秒前
Kyrie 11发布了新的文献求助10
6秒前
琥珀主发布了新的文献求助10
7秒前
zhangyidian应助hao采纳,获得10
7秒前
谨慎元容发布了新的文献求助10
7秒前
ytx发布了新的文献求助10
7秒前
8秒前
s010w1ngpixy发布了新的文献求助10
8秒前
CodeCraft应助娜行采纳,获得10
8秒前
九九完成签到,获得积分10
8秒前
清风应助聪慧橘子采纳,获得10
9秒前
老六发布了新的文献求助10
9秒前
9秒前
科目三应助马志宇采纳,获得10
10秒前
ding应助独特冬天采纳,获得10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487321
求助须知:如何正确求助?哪些是违规求助? 3075301
关于积分的说明 9140449
捐赠科研通 2767524
什么是DOI,文献DOI怎么找? 1518696
邀请新用户注册赠送积分活动 703213
科研通“疑难数据库(出版商)”最低求助积分说明 701699