已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analyzing surface electromyography signals to predict fatigue in Longissimus thoracis and Iliocostalis Cervicis muscles: A statistical model

肌电图 胸最长肌 工作(物理) 肌肉疲劳 小波 肌肉疲劳 物理医学与康复 数学 统计 计算机科学 物理疗法 计量经济学 医学 工程类 人工智能 机械工程 外科 温柔
作者
Hamed Salmanzadeh,Maryam Doroodi
出处
期刊:Human Factors and Ergonomics in Manufacturing & Service Industries [Wiley]
卷期号:32 (4): 335-344 被引量:3
标识
DOI:10.1002/hfm.20946
摘要

Abstract Given that people in many jobs suffer from intense pressure being imposed on their muscles, work‐related disabilities such as musculoskeletal disorders have turned into a major concern in industrial countries. Considering the significant financial and physical burden these disorders can put on people and society as a whole, preventing these issues seems more reasonable than remedying them. In this respect, there is a need for further studies concerning the prediction of muscle fatigue and activity under different working conditions. Accordingly, the present study considers an important aspect of this issue by focusing on postures in which the workers do not have access to the work station in the frontal direction. More specifically, the main purpose of this study is to present a statistical model to predict muscle fatigue, for which electromyographic signals are collected from the muscles of individuals while working at a simulated workstation, according to which the activities of the Longissimus thoracis and Iliocostalis Cervicis muscles are evaluated. Afterward, the wavelet transform is employed via Rbio 3.1 function at seven levels to process the collected signals, followed by using the normal mean absolute value index for feature extraction. Finally, some statistical models are created by the generalized estimating equation method. According to the results, posture factors, assembly cycle time, and rest intervals between cycles, which are variables, revealed significant impacts ( p < .05) on muscle fatigue. It should be mentioned that the most suitable levels of the mentioned variables are also determined based on the Taguchi design of the conducted experiments. The presented statistical models can be used for designing and comparing workstations with respect to pressure on muscles for more effectively assigning workstations to employees, planning, and scheduling work cycles, and designing industrial machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Tong发布了新的文献求助10
2秒前
浅蓝完成签到 ,获得积分10
3秒前
大大大忽悠完成签到 ,获得积分10
3秒前
HaoHao04完成签到 ,获得积分10
4秒前
zzzy完成签到 ,获得积分10
4秒前
哭泣的丝完成签到 ,获得积分10
6秒前
思源应助嘉冉采纳,获得10
6秒前
kidult完成签到 ,获得积分10
11秒前
聪明曼凡完成签到 ,获得积分10
11秒前
自信完成签到 ,获得积分10
11秒前
淡然大米完成签到 ,获得积分10
11秒前
李程阳完成签到 ,获得积分10
12秒前
快乐的不二法门完成签到,获得积分10
12秒前
14秒前
有峤完成签到 ,获得积分10
16秒前
沐11完成签到 ,获得积分10
17秒前
Sophia完成签到 ,获得积分10
18秒前
mingyu完成签到,获得积分10
18秒前
WangJL完成签到 ,获得积分10
19秒前
20秒前
龚幻梦发布了新的文献求助30
20秒前
李健应助鹅鹅鹅采纳,获得10
22秒前
LUCKY完成签到 ,获得积分10
22秒前
22秒前
wu完成签到 ,获得积分10
23秒前
庄冬丽完成签到,获得积分10
24秒前
24秒前
流星雨完成签到 ,获得积分10
24秒前
24秒前
yanyue完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
张坤完成签到,获得积分10
27秒前
喵喵完成签到 ,获得积分10
28秒前
由道罡完成签到 ,获得积分10
28秒前
凡舍完成签到 ,获得积分10
28秒前
成就书南完成签到,获得积分20
28秒前
姚美阁完成签到 ,获得积分10
29秒前
吴华宇完成签到,获得积分20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497907
求助须知:如何正确求助?哪些是违规求助? 4595310
关于积分的说明 14448698
捐赠科研通 4528005
什么是DOI,文献DOI怎么找? 2481297
邀请新用户注册赠送积分活动 1465523
关于科研通互助平台的介绍 1438156