A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines

海上风力发电 涡轮机 可靠性工程 风力发电 失效模式及影响分析 海洋工程 工程类 维护措施 贝叶斯网络 海底管道 计算机科学 机械工程 电气工程 人工智能 岩土工程
作者
He Li,Cheng‐Geng Huang,C. Guedes Soares
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:256: 111433-111433 被引量:97
标识
DOI:10.1016/j.oceaneng.2022.111433
摘要

This paper proposes an FMEA-BN model to determine the inspection and opportunistic maintenance strategies of floating offshore wind turbines. A mapping algorithm is proposed to establish a mirrored Bayesian Network (BN) model from a given failure mode and effect analysis (FMEA) structure to realize the FMEA-BN modelling, which is efficient to consider common cause failures. The failure probabilities of items of floating offshore wind turbines are first updated by the BN sub-model, in which, various operation scenarios are considered. The updated failure probabilities are then imported to the FMEA sub-model to determine the items of the floating offshore wind turbines that are to be inspected and to which the opportunistic maintenance action would be applied. With the FMEA-BN model, inspection and opportunistic maintenance strategies for a floating offshore wind turbine are suggested under several commonly occurring operation scenarios. The validation of the results is illustrated by the failure rate of the floating offshore wind turbine predicted by the BN sub-model, the uncertainty of which is lower than 3%. Overall, the presented FMEA-BN model supports real-time inspection and opportunistic maintenance strategies determination of complicated systems like floating offshore wind turbines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助文斌采纳,获得10
刚刚
123free完成签到,获得积分10
刚刚
2秒前
酷波er应助lan采纳,获得10
3秒前
淼淼完成签到 ,获得积分10
3秒前
王子娇完成签到 ,获得积分10
4秒前
Ray_Chun完成签到,获得积分10
9秒前
活力的妙芙完成签到,获得积分10
12秒前
firewood完成签到,获得积分10
14秒前
wbb完成签到 ,获得积分10
14秒前
暴发户完成签到,获得积分20
15秒前
小蘑菇应助小龙仔123采纳,获得10
18秒前
hero_ljw完成签到,获得积分10
20秒前
111完成签到,获得积分10
21秒前
思源应助科研通管家采纳,获得10
21秒前
dgshbsf应助科研通管家采纳,获得10
21秒前
tramp应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
21秒前
天天快乐应助科研通管家采纳,获得30
21秒前
21秒前
哈哈哈嘻嘻啦啦完成签到,获得积分20
21秒前
情怀应助科研通管家采纳,获得10
21秒前
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
21秒前
淡淡的豁应助科研通管家采纳,获得30
22秒前
Owen应助科研通管家采纳,获得10
22秒前
22秒前
大模型应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278