Quantifying the accuracies of six 30-m cropland datasets over China: A comparison and evaluation analysis

基本事实 中国 一致性(知识库) 像素 环境科学 自然地理学 遥感 统计 地理 地图学 计算机科学 数学 人工智能 考古
作者
Chao Zhang,Jinwei Dong,Quansheng Ge
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106946-106946 被引量:49
标识
DOI:10.1016/j.compag.2022.106946
摘要

With the development of remote sensing technology, more and more fine-resolution cropland datasets have emerged as powerful tools for agriculture planning and food security evaluation. But questions about their accuracy and reliability must be answered before using them, making evaluations necessary. So far, little attention has been paid to the performance of fine-resolution (e.g., 30 m) and cropland-specific products at continental or regional scales. This study implemented a comparison analysis and accuracy assessment for six cropland products with a 30-m resolution in China circa 2015, including FROM-GLC, GLC_FCS, CLCD, AGLC, GFSAD, GLAD. Their similarities and disparities were delineated at national, provincial, meridional, and zonal scales. 33,713 ground truth points were then collected through visual interpretation of Google Earth images and from existing available validation datasets, to evaluate the pixel-wise accuracy of them across China. In terms of spatial consistency, high agreement among the six products could be found in North China Plain and Northeast China, and low agreement was found in Southern, Southwest, and Northwest China. Topography including elevation and slope were important factors influencing spatial consistency. As for provincial area accuracy, CLCD and AGLC were most correlated with statistical data (r2 > 0.9), followed by GLAD (0.88) and AGLC (0.87). FROM-GLC had the lowest correlation (r2 = 0.37) with statistics. The relative area differences between each product and statistics also demonstrated that CLCD had the best area accuracies in most provinces. By contrast, GLC_FCS had a severe overestimation and FROM-GLC suffered from a large underestimation of cropland area. Last, the pixel-wise validation results indicated that CLCD and GLAD had the highest overall accuracy (OA) of 0.88, followed by AGLC (0.85) and GFSAD (0.84). FROM-GLC and GLC_FCS had the lowest OAs of less than 0.70. The comparison and evaluation results in this study can provide insights into the national and provincial performances of these fine-resolution cropland products and give valuable references for guiding data usage and help to improve future land use/cover mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Even完成签到 ,获得积分10
2秒前
2秒前
guyuangyy完成签到,获得积分10
2秒前
linda完成签到,获得积分10
2秒前
Eden发布了新的文献求助10
3秒前
呜啦啦发布了新的文献求助10
3秒前
3秒前
Kevin完成签到,获得积分10
4秒前
4秒前
ddm发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
沉默白猫完成签到,获得积分10
6秒前
7秒前
ljhwahaha完成签到,获得积分10
7秒前
撒大苏打完成签到,获得积分10
7秒前
8秒前
L_MD完成签到,获得积分10
8秒前
9秒前
汤翔发布了新的文献求助10
9秒前
10秒前
子枫完成签到,获得积分10
10秒前
13秒前
科研废物完成签到,获得积分10
13秒前
所所应助兴奋的香芦采纳,获得10
13秒前
123456787899发布了新的文献求助10
14秒前
AJJACKY完成签到,获得积分10
14秒前
Kevin发布了新的文献求助10
15秒前
15秒前
Carl发布了新的文献求助10
16秒前
17秒前
17秒前
ikun完成签到,获得积分10
18秒前
景自端发布了新的文献求助10
18秒前
wyy发布了新的文献求助10
18秒前
19秒前
深情安青应助呆萌的正豪采纳,获得10
20秒前
20秒前
李亚宁完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663