A high-capacity and reversible patient data hiding scheme for telemedicine

有效载荷(计算) 计算机科学 水印 隐写术 数字水印 信息隐藏 失真(音乐) 传输(电信) 封面(代数) 图像质量 远程医疗 人工智能 图像(数学) 像素 数据传输 计算机视觉 网络数据包 计算机网络 电信 机械工程 放大器 医疗保健 带宽(计算) 工程类 经济 经济增长
作者
Hua Zhang,Shihuan Sun,Fanli Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:76: 103706-103706 被引量:11
标识
DOI:10.1016/j.bspc.2022.103706
摘要

The quality and efficiency of telemedicine make progress successfully due to the launch of Electronic Medical Record (EMR). However, EMR suffers information security problems such as unauthorized access, data disclosure, and tampering in telemedicine transmission. To ensure security for sensitive EMR during telemedicine transmission, a novel high-capacity and reversible data hiding scheme is proposed to conceal EMR into the medical images using rectangular predictors and optimal strategy. The clinic original image is interpolated into the cover image in which interpolated pixels are predicted by rectangular predictor to facilitate reversibility and high payload for data hiding scheme. Based on the classification idea, the proposed rectangular predictor calculates the weighted factor via local correlation to protect edges and textures reducing the appearance of common interpolation defects like blurring, jaggies, and zippers. The binary secret message is converted into a series of secret symbols in base-T notational system to balance image quality and embedding capacity, in which optimal base-T is selected adaptively by the content length of the EMR. The EMR is embedded into the cover image via finding the optimal pixel modification value in liner area for lower distortion. In addition, a fragile watermark, as a discriminator of whether medical information has been tampered during transmission, is also hidden in the cover image. Abundant experimental results demonstrate that the proposed method is superior over state-of-the-art techniques in terms of payload and image quality. High payload of 2.25 bpp for PSNR 42 dB is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助蔡徐坤采纳,获得10
刚刚
1秒前
1秒前
lukescholar发布了新的文献求助10
1秒前
燕小丙完成签到,获得积分10
1秒前
1秒前
玲℃完成签到,获得积分10
1秒前
香蕉觅云应助大111采纳,获得10
1秒前
乐乐应助玛瑙采纳,获得10
1秒前
3秒前
3秒前
天空之城发布了新的文献求助10
3秒前
wanci应助王一博采纳,获得10
3秒前
4秒前
4秒前
哈哈哈哈完成签到,获得积分10
5秒前
诗恋菲宇完成签到,获得积分10
5秒前
6秒前
6秒前
xcl完成签到,获得积分10
6秒前
Z126发布了新的文献求助30
6秒前
6秒前
Jasper应助lulu采纳,获得30
7秒前
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
June发布了新的文献求助30
8秒前
CodeCraft应助晓世采纳,获得10
8秒前
可乐加冰发布了新的文献求助10
8秒前
ZBQ发布了新的文献求助10
9秒前
9秒前
科研通AI6应助new采纳,获得80
10秒前
Gracebing发布了新的文献求助10
10秒前
calm发布了新的文献求助10
10秒前
TTTTT完成签到,获得积分10
10秒前
靖雁完成签到,获得积分10
10秒前
xxxx完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082