A high-capacity and reversible patient data hiding scheme for telemedicine

有效载荷(计算) 计算机科学 水印 隐写术 数字水印 信息隐藏 失真(音乐) 传输(电信) 封面(代数) 图像质量 远程医疗 人工智能 图像(数学) 像素 数据传输 计算机视觉 网络数据包 计算机网络 电信 机械工程 放大器 医疗保健 带宽(计算) 工程类 经济 经济增长
作者
Hua Zhang,Shihuan Sun,Fanli Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:76: 103706-103706 被引量:11
标识
DOI:10.1016/j.bspc.2022.103706
摘要

The quality and efficiency of telemedicine make progress successfully due to the launch of Electronic Medical Record (EMR). However, EMR suffers information security problems such as unauthorized access, data disclosure, and tampering in telemedicine transmission. To ensure security for sensitive EMR during telemedicine transmission, a novel high-capacity and reversible data hiding scheme is proposed to conceal EMR into the medical images using rectangular predictors and optimal strategy. The clinic original image is interpolated into the cover image in which interpolated pixels are predicted by rectangular predictor to facilitate reversibility and high payload for data hiding scheme. Based on the classification idea, the proposed rectangular predictor calculates the weighted factor via local correlation to protect edges and textures reducing the appearance of common interpolation defects like blurring, jaggies, and zippers. The binary secret message is converted into a series of secret symbols in base-T notational system to balance image quality and embedding capacity, in which optimal base-T is selected adaptively by the content length of the EMR. The EMR is embedded into the cover image via finding the optimal pixel modification value in liner area for lower distortion. In addition, a fragile watermark, as a discriminator of whether medical information has been tampered during transmission, is also hidden in the cover image. Abundant experimental results demonstrate that the proposed method is superior over state-of-the-art techniques in terms of payload and image quality. High payload of 2.25 bpp for PSNR 42 dB is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
wf发布了新的文献求助10
2秒前
麦田的守望者完成签到,获得积分10
3秒前
3秒前
3秒前
Doss发布了新的文献求助10
3秒前
YANG完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
我是老大应助欢呼的开山采纳,获得10
5秒前
瘦瘦达完成签到,获得积分10
5秒前
上官若男应助caicai采纳,获得10
5秒前
小青椒应助罗婉婷采纳,获得100
6秒前
zy发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小陈医师完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
9秒前
9秒前
xiuxiuzhang发布了新的文献求助10
10秒前
芝士椰果发布了新的文献求助10
10秒前
慕青应助北克采纳,获得10
11秒前
xh完成签到,获得积分10
11秒前
考博圣体发布了新的文献求助10
11秒前
12秒前
Angora发布了新的文献求助10
12秒前
qwer发布了新的文献求助10
13秒前
13秒前
ac发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
ColdSpring完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277