A high-capacity and reversible patient data hiding scheme for telemedicine

有效载荷(计算) 计算机科学 水印 隐写术 数字水印 信息隐藏 失真(音乐) 传输(电信) 封面(代数) 图像质量 远程医疗 人工智能 图像(数学) 像素 数据传输 计算机视觉 网络数据包 计算机网络 电信 机械工程 放大器 医疗保健 带宽(计算) 工程类 经济 经济增长
作者
Hua Zhang,Shihuan Sun,Fanli Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:76: 103706-103706 被引量:11
标识
DOI:10.1016/j.bspc.2022.103706
摘要

The quality and efficiency of telemedicine make progress successfully due to the launch of Electronic Medical Record (EMR). However, EMR suffers information security problems such as unauthorized access, data disclosure, and tampering in telemedicine transmission. To ensure security for sensitive EMR during telemedicine transmission, a novel high-capacity and reversible data hiding scheme is proposed to conceal EMR into the medical images using rectangular predictors and optimal strategy. The clinic original image is interpolated into the cover image in which interpolated pixels are predicted by rectangular predictor to facilitate reversibility and high payload for data hiding scheme. Based on the classification idea, the proposed rectangular predictor calculates the weighted factor via local correlation to protect edges and textures reducing the appearance of common interpolation defects like blurring, jaggies, and zippers. The binary secret message is converted into a series of secret symbols in base-T notational system to balance image quality and embedding capacity, in which optimal base-T is selected adaptively by the content length of the EMR. The EMR is embedded into the cover image via finding the optimal pixel modification value in liner area for lower distortion. In addition, a fragile watermark, as a discriminator of whether medical information has been tampered during transmission, is also hidden in the cover image. Abundant experimental results demonstrate that the proposed method is superior over state-of-the-art techniques in terms of payload and image quality. High payload of 2.25 bpp for PSNR 42 dB is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
田様应助张晓年采纳,获得10
1秒前
1秒前
一指墨完成签到,获得积分10
2秒前
爆米花应助ddd采纳,获得10
2秒前
2秒前
海纳百川完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
冬易发布了新的文献求助10
2秒前
欣喜冷卉完成签到,获得积分20
3秒前
peng完成签到,获得积分10
3秒前
4秒前
难过水杯完成签到 ,获得积分10
4秒前
cch12121发布了新的文献求助10
4秒前
星辰大海应助明天就毕业采纳,获得10
6秒前
6秒前
无极微光应助阿龙采纳,获得20
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
聪慧的金鱼完成签到,获得积分20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Verity应助科研通管家采纳,获得20
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
自由的沛山完成签到,获得积分10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
HOAN应助科研通管家采纳,获得30
7秒前
思源应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
烟花应助含糊的冰安采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
嘞是举仔应助科研通管家采纳,获得10
8秒前
半圆亻发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
QX发布了新的文献求助10
8秒前
林晚停应助科研通管家采纳,获得10
8秒前
lcc应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027