A Study on Small Pest Detection Based on a CascadeR-CNN-Swin Model

卷积神经网络 级联 人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 学习迁移 F1得分 机器学习 算法 化学 色谱法
作者
Manting Li,Sanghyun Lee
出处
期刊:Computers, materials & continua 卷期号:72 (3): 6155-6165 被引量:8
标识
DOI:10.32604/cmc.2022.025714
摘要

This study aims to detect and prevent greening disease in citrus trees using a deep neural network. The process of collecting data on citrus greening disease is very difficult because the vector pests are too small. In this paper, since the amount of data collected for deep learning is insufficient, we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm. We want to use the Cascade Region-based Convolutional Neural Networks (Cascade R-CNN) Swin model, which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus. In this paper, we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms, which are image processing-based data augmentation techniques. In addition, by using the ImageNet dataset, transfer learning, and stochastic weight averaging (SWA) methods, more accuracy can be obtained. This study compared the Faster Region-based Convolutional Neural Networks Residual Network101 (Faster R-CNN ResNet101) model, Cascade Region-based Convolutional Neural Networks Residual Network101 (Cascade R-CNN-ResNet101) model, and Cascade R-CNN Swin Model. As a result, the Faster R-CNN ResNet101 model came out as Average Precision (AP) (Intersection over Union (IoU)=0.5): 88.2%, AP(IoU = 0.75): 62.8%, Recall: 68.2%, and the Cascade R-CNN ResNet101 model was AP(IoU = 0.5): 91.5%, AP (IoU = 0.75): 67.2%, Recall: 73.1%. Alternatively, the Cascade R-CNN Swin Model showed AP (IoU = 0.5): 94.9%, AP (IoU = 0.75): 79.8% and Recall: 76.5%. Thus, the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yhb发布了新的文献求助10
2秒前
小虎发布了新的文献求助30
3秒前
淡淡的小蚂蚁完成签到,获得积分10
4秒前
拉稀摆带完成签到 ,获得积分10
5秒前
桃子完成签到,获得积分10
6秒前
源晓现发布了新的文献求助10
6秒前
周周发布了新的文献求助10
8秒前
8秒前
羊羊羊发布了新的文献求助10
8秒前
跳跃的访琴完成签到,获得积分10
9秒前
花开富贵完成签到 ,获得积分10
11秒前
陈pc发布了新的文献求助10
11秒前
13秒前
谭yuanjun发布了新的文献求助30
16秒前
华仔应助羊羊羊采纳,获得10
17秒前
桐桐应助淡淡的小蚂蚁采纳,获得10
17秒前
cocolu应助海不扬波采纳,获得10
17秒前
17秒前
8R60d8应助糕手糕手糕糕手采纳,获得10
17秒前
梁世秀发布了新的文献求助10
18秒前
18秒前
可爱的函函应助Leif采纳,获得10
20秒前
21秒前
酷波er应助和颂采纳,获得10
22秒前
小二郎应助碧蓝板栗采纳,获得20
22秒前
24秒前
25秒前
27秒前
28秒前
30秒前
cocolu应助海不扬波采纳,获得10
32秒前
cocolu应助海不扬波采纳,获得10
32秒前
yyxx完成签到,获得积分10
33秒前
不配.应助传统的鹏涛采纳,获得10
34秒前
35秒前
陈pc完成签到,获得积分10
35秒前
梁世秀完成签到 ,获得积分10
36秒前
w新新新发布了新的文献求助10
37秒前
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624