Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 自编码 理论计算机科学 药物发现 数学 化学 生物化学 计算化学 数学分析
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (3): 279-287 被引量:479
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
友好的尔容完成签到,获得积分10
刚刚
刚刚
sherry完成签到,获得积分10
刚刚
haha完成签到,获得积分10
1秒前
冲冲冲完成签到,获得积分10
1秒前
lotu_fr完成签到,获得积分10
2秒前
田様应助SYY采纳,获得10
3秒前
zhishiyumi发布了新的文献求助10
3秒前
吴学仕完成签到,获得积分10
3秒前
Owen应助guojing1321采纳,获得10
4秒前
小马甲应助xiaoxiao采纳,获得10
4秒前
小蘑菇应助selena采纳,获得50
4秒前
俊逸的代曼完成签到,获得积分10
5秒前
熔岩巨兽墨菲特完成签到,获得积分10
5秒前
谈理想完成签到,获得积分10
5秒前
右右发布了新的文献求助10
6秒前
leisure发布了新的文献求助10
6秒前
ECT完成签到,获得积分10
6秒前
坚强枫发布了新的文献求助30
6秒前
闪电侠完成签到 ,获得积分10
7秒前
南宫清涟发布了新的文献求助20
7秒前
hhh完成签到,获得积分10
7秒前
木心应助王木木采纳,获得20
7秒前
axn发布了新的文献求助10
8秒前
NexusExplorer应助Yosemite采纳,获得10
8秒前
111完成签到 ,获得积分10
9秒前
9秒前
曾经的臻完成签到,获得积分10
9秒前
9秒前
系统提示完成签到,获得积分10
9秒前
Chen完成签到,获得积分10
9秒前
JinGN完成签到,获得积分10
10秒前
10秒前
Vaibhav完成签到,获得积分10
11秒前
星辰大海应助图图搞科研采纳,获得10
11秒前
hhh发布了新的文献求助10
11秒前
12秒前
12秒前
哦哟发布了新的文献求助30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582