Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 理论计算机科学 药物发现 数学 化学 生物化学 数学分析 计算化学
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 279-287 被引量:349
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周凡淇发布了新的文献求助10
1秒前
冰摇红莓黑加仑关注了科研通微信公众号
4秒前
liweiDr发布了新的文献求助10
4秒前
5秒前
8秒前
8秒前
茉莉静颖完成签到,获得积分10
10秒前
研友_LjbjzL完成签到,获得积分10
11秒前
共享精神应助LX采纳,获得10
12秒前
13秒前
13秒前
xiyu666完成签到 ,获得积分10
15秒前
xiaochen发布了新的文献求助10
15秒前
16秒前
小草三心发布了新的文献求助10
17秒前
jzy发布了新的文献求助10
17秒前
kytwenxian完成签到,获得积分10
17秒前
20秒前
21秒前
21秒前
24秒前
科研通AI2S应助mjn404采纳,获得10
26秒前
26秒前
IMF发布了新的文献求助10
27秒前
jzy完成签到,获得积分10
27秒前
28秒前
今后应助独特的高山采纳,获得10
28秒前
Dr发布了新的文献求助10
30秒前
酷炫的秋凌完成签到,获得积分10
31秒前
兮豫完成签到 ,获得积分10
31秒前
阿尼亚发布了新的文献求助30
31秒前
LX发布了新的文献求助10
33秒前
33秒前
W~舞发布了新的文献求助10
33秒前
34秒前
Guoguocheng发布了新的文献求助10
38秒前
39秒前
六六发布了新的文献求助10
40秒前
W~舞完成签到,获得积分10
43秒前
乐乐应助欢呼的凌兰采纳,获得10
44秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139211
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7794004
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301236
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109