Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 自编码 理论计算机科学 药物发现 数学 化学 生物化学 计算化学 数学分析
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 279-287 被引量:659
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qing发布了新的文献求助10
1秒前
1秒前
nuanxiner完成签到 ,获得积分10
2秒前
Joker完成签到,获得积分10
2秒前
香蕉觅云应助务实凡灵采纳,获得10
2秒前
旱田蜗牛完成签到,获得积分10
3秒前
彭于晏应助Yu采纳,获得10
3秒前
风清扬发布了新的文献求助10
3秒前
老实三娘发布了新的文献求助10
3秒前
好蓝发布了新的文献求助10
3秒前
易楠完成签到,获得积分10
4秒前
浮游应助邓锦程采纳,获得10
4秒前
Lucas应助wq采纳,获得10
5秒前
5秒前
脑洞疼应助YYJJHH采纳,获得10
6秒前
张张发布了新的文献求助10
6秒前
赘婿应助小白采纳,获得10
7秒前
1234567发布了新的文献求助10
7秒前
xiao123完成签到,获得积分20
7秒前
迷路代玉完成签到,获得积分10
7秒前
花椰菜完成签到,获得积分20
7秒前
7秒前
8秒前
ChenYI完成签到 ,获得积分10
8秒前
shi hui发布了新的文献求助10
8秒前
打打应助Hotaru采纳,获得10
8秒前
Tohka完成签到 ,获得积分10
9秒前
10秒前
杨榆藤完成签到,获得积分10
10秒前
隐形曼青应助eseme采纳,获得30
10秒前
花椰菜发布了新的文献求助10
12秒前
尉迟仰发布了新的文献求助30
12秒前
13秒前
13秒前
科研通AI6应助好蓝采纳,获得10
13秒前
bkagyin应助qingchi采纳,获得10
13秒前
今后应助bai采纳,获得10
14秒前
在水一方应助fpwx采纳,获得10
14秒前
14秒前
Jasper应助beiyue采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400370
求助须知:如何正确求助?哪些是违规求助? 4519664
关于积分的说明 14076262
捐赠科研通 4432553
什么是DOI,文献DOI怎么找? 2433708
邀请新用户注册赠送积分活动 1425910
关于科研通互助平台的介绍 1404615