Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 自编码 理论计算机科学 药物发现 数学 化学 生物化学 计算化学 数学分析
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 279-287 被引量:659
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力发布了新的文献求助10
1秒前
1秒前
dan发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
joshiii发布了新的文献求助10
3秒前
yyh发布了新的文献求助20
3秒前
星辞发布了新的文献求助10
4秒前
zln完成签到,获得积分10
4秒前
爆米花应助苹果大侠采纳,获得10
4秒前
4秒前
zheng发布了新的文献求助10
5秒前
YXHTCM发布了新的文献求助10
5秒前
王不留行完成签到,获得积分10
5秒前
ww发布了新的文献求助10
5秒前
5秒前
完美世界应助负责不愁采纳,获得10
6秒前
小茗发布了新的文献求助10
6秒前
SUMING发布了新的文献求助10
6秒前
12123浪发布了新的文献求助10
7秒前
ta发布了新的文献求助10
7秒前
示羊完成签到,获得积分10
8秒前
啊哈哈哈哈哈完成签到,获得积分10
8秒前
9秒前
9秒前
眉洛发布了新的文献求助10
9秒前
9秒前
木子发布了新的文献求助10
10秒前
10秒前
完美栾发布了新的文献求助10
10秒前
10秒前
liuzhanyu发布了新的文献求助10
11秒前
wAchlNiinM发布了新的文献求助10
11秒前
11秒前
鸟鸣完成签到,获得积分10
11秒前
11秒前
十三月的过客完成签到,获得积分10
11秒前
12秒前
小狗黑头发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297798
求助须知:如何正确求助?哪些是违规求助? 4446568
关于积分的说明 13839917
捐赠科研通 4331721
什么是DOI,文献DOI怎么找? 2377860
邀请新用户注册赠送积分活动 1373172
关于科研通互助平台的介绍 1338697