Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 自编码 理论计算机科学 药物发现 数学 化学 生物化学 计算化学 数学分析
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (3): 279-287 被引量:548
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
syyy发布了新的文献求助30
1秒前
清秀的初翠完成签到,获得积分10
1秒前
北阳发布了新的文献求助10
1秒前
汉堡包应助小黄采纳,获得10
1秒前
2秒前
华仔应助缺口口采纳,获得10
2秒前
syfsyfsyf完成签到,获得积分20
2秒前
mumuaidafu发布了新的文献求助10
3秒前
3秒前
Alias完成签到,获得积分10
3秒前
3秒前
李爱国应助我是X哥采纳,获得10
4秒前
lu发布了新的文献求助10
4秒前
4秒前
syfsyfsyf发布了新的文献求助10
5秒前
隐形曼青应助cc采纳,获得10
6秒前
sc完成签到 ,获得积分10
6秒前
6秒前
王子娇发布了新的文献求助10
6秒前
黄春松关注了科研通微信公众号
6秒前
6秒前
popvich应助ZMO采纳,获得20
7秒前
Ava应助科研通管家采纳,获得30
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
丁浩伦应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
乐乐应助危机的碧菡采纳,获得10
9秒前
9秒前
9秒前
626完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543