Multimodal Information Bottleneck: Learning Minimal Sufficient Unimodal and Multimodal Representations

计算机科学 信息瓶颈法 人工智能 特征学习 相互信息 多模式学习 嵌入 机器学习 判别式 瓶颈 代表(政治) 光学(聚焦) 光学 物理 嵌入式系统 政治 法学 政治学
作者
Sijie Mai,Ying Zeng,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 4121-4134 被引量:56
标识
DOI:10.1109/tmm.2022.3171679
摘要

Learning effective joint embedding for cross-modal data has always been a focus in the field of multimodal machine learning. We argue that during multimodal fusion, the generated multimodal embedding may be redundant, and the discriminative unimodal information may be ignored, which often interferes with accurate prediction and leads to a higher risk of overfitting. Moreover, unimodal representations also contain noisy information that negatively influences the learning of cross-modal dynamics. To this end, we introduce the multimodal information bottleneck (MIB), aiming to learn a powerful and sufficient multimodal representation that is free of redundancy and to filter out noisy information in unimodal representations. Specifically, inheriting from the general information bottleneck (IB), MIB aims to learn the minimal sufficient representation for a given task by maximizing the mutual information between the representation and the target and simultaneously constraining the mutual information between the representation and the input data. Different from general IB, our MIB regularizes both the multimodal and unimodal representations, which is a comprehensive and flexible framework that is compatible with any fusion methods. We develop three MIB variants, namely, early-fusion MIB, late-fusion MIB, and complete MIB, to focus on different perspectives of information constraints. Experimental results suggest that the proposed method reaches state-of-the-art performance on the tasks of multimodal sentiment analysis and multimodal emotion recognition across three widely used datasets. The codes are available at \url{https://github.com/TmacMai/Multimodal-Information-Bottleneck}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小怪兽采纳,获得10
1秒前
孙晓燕完成签到 ,获得积分10
2秒前
灰灰灰发布了新的文献求助10
3秒前
万能图书馆应助欢--采纳,获得10
3秒前
无私诗桃完成签到,获得积分10
3秒前
xing525888发布了新的文献求助10
3秒前
3秒前
wangjie发布了新的文献求助10
4秒前
64658应助聪慧冰淇淋采纳,获得10
4秒前
4秒前
4秒前
张秉环完成签到 ,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
传奇3应助caixiayin采纳,获得30
6秒前
星辰大海应助奋斗的宛亦采纳,获得10
6秒前
Karry完成签到 ,获得积分10
7秒前
7秒前
8秒前
nqyKOj发布了新的文献求助20
8秒前
JamesPei应助HYI采纳,获得10
8秒前
myj发布了新的文献求助10
8秒前
欣欣完成签到,获得积分10
9秒前
Lucifer完成签到,获得积分10
9秒前
9秒前
duli发布了新的文献求助10
9秒前
9秒前
10秒前
Owen应助认真柜子采纳,获得10
10秒前
FashionBoy应助薇薇安采纳,获得10
10秒前
科研通AI5应助欢呼妙菱采纳,获得10
11秒前
霸气鞯完成签到 ,获得积分10
11秒前
xxcarry完成签到 ,获得积分10
11秒前
11秒前
rlix发布了新的文献求助10
12秒前
个性梦蕊发布了新的文献求助10
12秒前
欣欣发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635