Movements Classification Through sEMG With Convolutional Vision Transformer and Stacking Ensemble Learning

计算机科学 卷积神经网络 人工智能 深度学习 特征提取 变压器 模式识别(心理学) 堆积 特征学习 机器学习 工程类 电压 核磁共振 电气工程 物理
作者
Shu Shen,Xuebin Wang,Fan Mao,Lijuan Sun,Minghui Gu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (13): 13318-13325 被引量:28
标识
DOI:10.1109/jsen.2022.3179535
摘要

Thanks to the powerful capability of the feature extraction, deep learning has become a promising technology for an increasing number of researchers to decode movements from surface Electromyography (sEMG) signals. The mainstream methods of deep learning are based on Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN). However, the sequential features of sEMG signals will be ignored in CNN-based approaches while the training of the neural networks is much time-consuming in RNN-based approaches. To solve these problems, a novel convolutional vision transformer (CviT) with stacking ensemble learning is proposed in this paper, which has great potential in the fusion of sequential and spatial features of sEMG signals with the parallel training. In NinaPro DB2, the proposed method achieves 80.02% with the window length of 200ms. In the subset of NinaPro DB2 (Exercise E1), the proposed method achieves 83.47% and 84.09% with the window length of 200ms and 300ms respectively. In the subsets of NinaPro DB5 (Exercise A, Exercise B), the proposed method achieves 76.83% and 73.23% respectively. The experimental results demonstrate that the proposed CviT has better performance than most current approaches. In addition, the successful application of Transformer in sEMG-based movements classification provides a significant reference for the application of Transformer in other biological signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZZZ发布了新的文献求助10
1秒前
野性的行天完成签到,获得积分10
1秒前
科研通AI2S应助xx采纳,获得10
2秒前
繁星完成签到,获得积分10
4秒前
隐形觅翠关注了科研通微信公众号
4秒前
迷人若冰发布了新的文献求助10
5秒前
大模型应助傅双庆采纳,获得10
6秒前
tupee发布了新的文献求助10
6秒前
bkagyin应助木日采纳,获得20
7秒前
小马甲应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
cdu应助科研通管家采纳,获得10
9秒前
简拉基次德完成签到,获得积分10
9秒前
不配.应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
球球发布了新的文献求助10
9秒前
9秒前
张文涛完成签到,获得积分10
9秒前
10秒前
可爱的函函应助邢友通采纳,获得10
10秒前
10秒前
Lwxbb发布了新的文献求助10
11秒前
11秒前
11秒前
ZYT发布了新的文献求助10
12秒前
闪闪月亮应助LZHWSND采纳,获得10
13秒前
不配.应助LZHWSND采纳,获得10
13秒前
华仔应助LZHWSND采纳,获得10
13秒前
cc发布了新的文献求助30
13秒前
iNk应助Han采纳,获得10
14秒前
所所应助xiao采纳,获得10
14秒前
科目三应助安然采纳,获得10
15秒前
Culto完成签到,获得积分20
15秒前
BING发布了新的文献求助10
16秒前
linyu发布了新的文献求助10
16秒前
小叶子发布了新的文献求助10
16秒前
Zephyr完成签到 ,获得积分10
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129063
求助须知:如何正确求助?哪些是违规求助? 2779896
关于积分的说明 7745143
捐赠科研通 2435056
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623471
版权声明 600542