High-resolution seismic faults interpretation based on adversarial neural networks with a regularization technique

鉴别器 分割 计算机科学 正规化(语言学) 断层(地质) 人工神经网络 特征(语言学) 人工智能 模式识别(心理学) 传感器融合 数据挖掘 地震学 地质学 探测器 电信 语言学 哲学
作者
Tianqi Wang,Yanfei Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (6): IM207-IM219 被引量:2
标识
DOI:10.1190/geo2021-0383.1
摘要

Geologic fault detection at high precision and resolution is the key for fine structure and reservoir modeling. Previous studies using neural networks for fault segmentation mainly focus on the local features of the targets and train the networks using synthetic data sets. To increase the fault segmentation resolution only using a limited amount of seismic field data, we develop an adversarial neural network architecture for high-resolution identification of faults (FaultAdvNet) taking advantage of global feature fusion. The architecture consists of (1) a light-weight segmentation module (approximately 0.49 M parameters), (2) a feature fusion module considering reflectors of faults and surrounding stratums, and (3) a discriminator module acting as a regularization term. Case studies using seismic field data from the Gulf of Mexico show an overwhelming performance improvement of the FaultAdvNet when compared with other fault detection methods. The FaultAdvNet picks all of the faults with sufficiently high confidence and low prediction risk. The predicted faults of the FaultAdvNet have good continuity and show clear boundary with fault probability values mainly ranging from 0.95 to 1. Saliency analysis also suggests that the FaultAdvNet can focus on the target at a sufficiently higher resolution (dozens of meters). Functionality experiments verify the mechanisms of the feature fusion module and the discriminator module in FaultAdvNet. We consider that a neural network (such as the discriminator) can serve as a data-driven regularization term to constrain the target network (the segmentation network) efficiently, especially given a limited amount of seismic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯夫子完成签到,获得积分10
刚刚
酷波er应助11采纳,获得10
1秒前
若ruofeng应助janice采纳,获得10
2秒前
平安喜乐完成签到,获得积分10
3秒前
球球昂完成签到,获得积分10
3秒前
4秒前
5秒前
8秒前
XJ应助顺利紫山采纳,获得10
8秒前
9秒前
钟美莲发布了新的文献求助10
10秒前
12秒前
13秒前
红宝石设计局完成签到,获得积分10
15秒前
16秒前
沉默完成签到,获得积分10
21秒前
小诗发布了新的文献求助30
21秒前
23秒前
25秒前
烟花应助Hayat采纳,获得10
27秒前
难过大神完成签到,获得积分10
28秒前
cdercder应助Rjy采纳,获得10
28秒前
30秒前
30秒前
彭于晏应助dasfdufos采纳,获得10
31秒前
mo发布了新的文献求助20
31秒前
马凯完成签到,获得积分10
31秒前
31秒前
小诗完成签到,获得积分20
31秒前
Baekhyun完成签到,获得积分10
31秒前
loin发布了新的文献求助30
35秒前
刻苦鼠标发布了新的文献求助20
35秒前
Orange应助科研通管家采纳,获得10
38秒前
元谷雪应助科研通管家采纳,获得10
38秒前
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得30
38秒前
科研通AI5应助科研通管家采纳,获得200
38秒前
栀晴应助科研通管家采纳,获得20
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901