已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Convolutional Neural Network for Human Motion Recognition and Classification Using a Millimeter-Wave Doppler Radar

卷积神经网络 人工智能 计算机科学 雷达 基带 模式识别(心理学) 语音识别 计算机视觉 电信 带宽(计算)
作者
Homa Arab,Iman Ghaffari,Lydia Chioukh,Serioja Ovidiu Tatu,Steven Dufour
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (5): 4494-4502 被引量:16
标识
DOI:10.1109/jsen.2022.3140787
摘要

Human movement detection based on millimeter-wave radar sensors is a technology of interest in various areas such as for smart surveillance, security, behavioral biometrics, biomedical systems, robotics, etc. This paper shows the feasibility and effectiveness of using a compact 24 GHz Doppler radar with a built-in low-noise microwave amplifier (LNA) for detecting and extracting signals coming from human motion. Reliability and accuracy is assessed based on a comprehensive theoretical analysis, and on simulation results followed by experimental investigations. A continuous wavelet transform (CWT) is used to decompose in-phase and quadrature ( ${I/Q}$ ) baseband signals to extract information about the dynamics of the system. The dataset consists of 1000 recordings in 8 motion classes (standing, walking, sitting, etc.). We propose to apply a two-channel convolutional neural network (CNN), which is composed of two CNN channels, for learning high-level features from time-domain signals and CWT spectrograms. One channel has four one-dimensional (1D) convolutional and pooling layers, and the other channel is made of three two-dimensional (2D) convolutional and pooling layers. In addition, the ${I/Q}$ signals are denoised by using Savitzky-Golay filtering, and both noisy and denoised signals are used as input signals for deep learning data augmentation purpose. We achieved an overall classification accuracy rate of 98.85% in motion classification for a two-branch CNN architecture, and an accuracy rate of 95.3% for a one-branch 2D-CNN. Our results show that a dual-channel CNN model can greatly increase the classification capabilities of human motion recognition and classification, and the proposed method can be effectively used with various radar signal classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助congcong采纳,获得10
1秒前
2秒前
整齐凝竹完成签到 ,获得积分10
5秒前
蜜呐发布了新的文献求助10
6秒前
6秒前
AZN完成签到 ,获得积分10
8秒前
8秒前
xsy完成签到 ,获得积分10
9秒前
充电宝应助牛牛眉目采纳,获得10
10秒前
binbin发布了新的文献求助10
12秒前
年轻馒头应助蜜呐采纳,获得10
14秒前
医学牲完成签到,获得积分10
19秒前
科研小白完成签到,获得积分10
21秒前
24秒前
25秒前
念安发布了新的文献求助10
29秒前
吡咯爱成环完成签到,获得积分0
29秒前
29秒前
研友_Z6W9B8发布了新的文献求助20
30秒前
31秒前
31秒前
34秒前
沈万熙发布了新的文献求助10
35秒前
SS发布了新的文献求助10
35秒前
猪猪hero应助科研通管家采纳,获得30
36秒前
猪猪hero应助科研通管家采纳,获得10
36秒前
猪猪hero应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
ding应助科研通管家采纳,获得10
37秒前
FIN应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
pywangsmmu92完成签到,获得积分10
37秒前
桐桐应助念安采纳,获得10
40秒前
41秒前
41秒前
43秒前
靖柔发布了新的文献求助10
46秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168