A Convolutional Neural Network for Human Motion Recognition and Classification Using a Millimeter-Wave Doppler Radar

卷积神经网络 人工智能 计算机科学 雷达 基带 模式识别(心理学) 语音识别 计算机视觉 电信 带宽(计算)
作者
Homa Arab,Iman Ghaffari,Lydia Chioukh,Serioja Ovidiu Tatu,Steven Dufour
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (5): 4494-4502 被引量:16
标识
DOI:10.1109/jsen.2022.3140787
摘要

Human movement detection based on millimeter-wave radar sensors is a technology of interest in various areas such as for smart surveillance, security, behavioral biometrics, biomedical systems, robotics, etc. This paper shows the feasibility and effectiveness of using a compact 24 GHz Doppler radar with a built-in low-noise microwave amplifier (LNA) for detecting and extracting signals coming from human motion. Reliability and accuracy is assessed based on a comprehensive theoretical analysis, and on simulation results followed by experimental investigations. A continuous wavelet transform (CWT) is used to decompose in-phase and quadrature ( ${I/Q}$ ) baseband signals to extract information about the dynamics of the system. The dataset consists of 1000 recordings in 8 motion classes (standing, walking, sitting, etc.). We propose to apply a two-channel convolutional neural network (CNN), which is composed of two CNN channels, for learning high-level features from time-domain signals and CWT spectrograms. One channel has four one-dimensional (1D) convolutional and pooling layers, and the other channel is made of three two-dimensional (2D) convolutional and pooling layers. In addition, the ${I/Q}$ signals are denoised by using Savitzky-Golay filtering, and both noisy and denoised signals are used as input signals for deep learning data augmentation purpose. We achieved an overall classification accuracy rate of 98.85% in motion classification for a two-branch CNN architecture, and an accuracy rate of 95.3% for a one-branch 2D-CNN. Our results show that a dual-channel CNN model can greatly increase the classification capabilities of human motion recognition and classification, and the proposed method can be effectively used with various radar signal classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怀南完成签到 ,获得积分20
1秒前
yeguxing33完成签到,获得积分10
7秒前
谢朝邦完成签到 ,获得积分10
8秒前
Jeffery426发布了新的文献求助10
9秒前
机智的青柏完成签到 ,获得积分10
19秒前
旷野完成签到,获得积分10
21秒前
旷野发布了新的文献求助10
25秒前
所爱皆在完成签到 ,获得积分10
30秒前
leaolf应助科研通管家采纳,获得150
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
Aluhaer应助科研通管家采纳,获得150
37秒前
贝贝应助科研通管家采纳,获得150
37秒前
Aluhaer应助科研通管家采纳,获得20
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
深情安青应助科研通管家采纳,获得10
37秒前
六氟合铂酸氙完成签到 ,获得积分10
40秒前
40秒前
机智咖啡豆完成签到 ,获得积分10
42秒前
小强呐完成签到 ,获得积分10
42秒前
2316690509完成签到 ,获得积分10
46秒前
踏实谷蓝完成签到 ,获得积分10
47秒前
彩色的芷容完成签到 ,获得积分10
47秒前
52秒前
鲲鹏完成签到 ,获得积分10
59秒前
Jeffery426发布了新的文献求助10
1分钟前
Lora完成签到,获得积分10
1分钟前
stop here完成签到,获得积分10
1分钟前
夜琉璃完成签到 ,获得积分10
1分钟前
万事屋完成签到 ,获得积分0
1分钟前
鱼人完成签到,获得积分10
1分钟前
onestep完成签到,获得积分10
1分钟前
1分钟前
arniu2008发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ZJH完成签到 ,获得积分10
2分钟前
阳佟听荷完成签到,获得积分10
2分钟前
zqy完成签到 ,获得积分10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139290
求助须知:如何正确求助?哪些是违规求助? 4338255
关于积分的说明 13512475
捐赠科研通 4177469
什么是DOI,文献DOI怎么找? 2290808
邀请新用户注册赠送积分活动 1291321
关于科研通互助平台的介绍 1233574