Integrative Single-Cell and Bulk Transcriptomes Analyses Identify Intrinsic HNSCC Subtypes with Distinct Prognoses and Therapeutic Vulnerabilities

转录组 生物 计算生物学 细胞 癌症研究 医学 基因 基因表达 遗传学
作者
Yibin Dai,Ziyu Wang,Yingchao Xia,Jin Li,Yaping Wu,Yanling Wang,Hongbing Jiang,Jie Cheng
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (15): 2845-2858 被引量:7
标识
DOI:10.1158/1078-0432.ccr-22-3563
摘要

Abstract Purpose: Tumor heterogeneity in head and neck squamous cell carcinoma (HNSCC) profoundly compromises patient stratification, personalized treatment planning, and prognostic prediction, which underscores the urgent need for more effective molecular subtyping for this malignancy. Here, we sought to define the intrinsic epithelial subtypes for HNSCC by integrative analyses of single-cell and bulk RNA sequencing datasets from multiple cohorts and assess their molecular features and clinical significance. Experimental Design: Malignant epithelial cells were identified from single-cell RNA sequencing (scRNA-seq) datasets and subtyped on the basis of differentially expressed genes. Subtype-specific genomic/epigenetic abnormalities, molecular signaling, genetic regulatory network, immune landscape, and patient survival were characterized. Therapeutic vulnerabilities were further predicted on the basis of drug sensitivity datasets from cell lines, patient-derived xenograft models, and real-world clinical outcomes. Novel signatures for prognostication and therapeutic prediction were developed by machine learning and independently validated. Results: Three intrinsic consensus molecular subtypes (iCMS1–3) for HNSCC were proposed from scRNA-seq analyses and recapitulated in 1,325 patients from independent cohorts using bulk-sequencing datasets. iCMS1 was characterized by EGFR amplification/activation, stromal-enriched environment, epithelial-to-mesenchymal transition, worst survival, and sensitivities to EGFR inhibitor. iCMS2 was featured by human papillomavirus–positive oropharyngeal predilection, immune-hot, susceptibilities to anti–PD-1, and best prognosis. Moreover, iCMS3 displayed immune-desert and sensitivities to 5-FU and MEK, STAT3 inhibitors. Three novel, robust signatures derived from iCMS subtype-specific transcriptomics features were developed by machine learning for patient prognostication and cetuximab and anti–PD-1 response predictions. Conclusions: These findings reiterate molecular heterogeneity of HNSCC and advantages of scRNA-seq in pinpointing cellular diversities in complex cancer ecosystems. Our HNSCC iCMS regime might facilitate accurate patient stratification and individualized precise treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运完成签到,获得积分10
刚刚
Joy完成签到 ,获得积分10
1秒前
板栗完成签到,获得积分10
1秒前
忧虑的花卷完成签到,获得积分10
2秒前
研友_LpvQlZ完成签到,获得积分10
2秒前
惑感完成签到 ,获得积分10
3秒前
易子完成签到 ,获得积分10
4秒前
4秒前
好运发布了新的文献求助10
4秒前
苗条的傲珊完成签到,获得积分10
4秒前
40873完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
ldjldj_2004完成签到 ,获得积分10
5秒前
jhxie完成签到,获得积分10
6秒前
新野完成签到,获得积分10
6秒前
飞火完成签到,获得积分10
7秒前
Raylihuang应助一一采纳,获得10
8秒前
星空完成签到,获得积分10
8秒前
8秒前
9秒前
yangching完成签到,获得积分10
9秒前
爸爸完成签到,获得积分10
9秒前
CX完成签到 ,获得积分10
10秒前
无限的寄真完成签到 ,获得积分10
12秒前
蓝莓酱完成签到,获得积分0
13秒前
强壮的小牙签完成签到,获得积分10
14秒前
hm完成签到,获得积分10
15秒前
司空沛槐完成签到,获得积分0
16秒前
base完成签到,获得积分10
17秒前
毛毛完成签到,获得积分10
20秒前
liu bo完成签到,获得积分10
21秒前
Milo完成签到,获得积分10
21秒前
22秒前
老白完成签到,获得积分10
22秒前
oaixlittle完成签到,获得积分10
22秒前
认真的谷蓝完成签到 ,获得积分10
23秒前
marvelou完成签到,获得积分10
23秒前
英俊亦巧完成签到,获得积分10
24秒前
吐槽君发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155064
求助须知:如何正确求助?哪些是违规求助? 2805825
关于积分的说明 7866345
捐赠科研通 2464156
什么是DOI,文献DOI怎么找? 1311780
科研通“疑难数据库(出版商)”最低求助积分说明 629742
版权声明 601862