Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks

库存控制 对偶(语法数字) 人工神经网络 计算机科学 控制(管理) 战略式采购 运筹学 运营管理 工业工程 业务 人工智能 数学 战略规划 营销 工程类 战略财务管理 文学类 艺术
作者
Lucas Böttcher,Thomas Asikis,Ioannis Fragkos
出处
期刊:Informs Journal on Computing 卷期号:35 (6): 1308-1328 被引量:5
标识
DOI:10.1287/ijoc.2022.0136
摘要

A key challenge in inventory management is to identify policies that optimally replenish inventory from multiple suppliers. To solve such optimization problems, inventory managers need to decide what quantities to order from each supplier, given the net inventory and outstanding orders, so that the expected backlogging, holding, and sourcing costs are jointly minimized. Inventory management problems have been studied extensively for over 60 years, and yet even basic dual-sourcing problems, in which orders from an expensive supplier arrive faster than orders from a regular supplier, remain intractable in their general form. In addition, there is an emerging need to develop proactive, scalable optimization algorithms that can adjust their recommendations to dynamic demand shifts in a timely fashion. In this work, we approach dual sourcing from a neural network--based optimization lens and incorporate information on inventory dynamics and its replenishment (i.e., control) policies into the design of recurrent neural networks. We show that the proposed neural network controllers (NNCs) are able to learn near-optimal policies of commonly used instances within a few minutes of CPU time on a regular personal computer. To demonstrate the versatility of NNCs, we also show that they can control inventory dynamics with empirical, non-stationary demand distributions that are challenging to tackle effectively using alternative, state-of-the-art approaches. Our work shows that high-quality solutions of complex inventory management problems with non-stationary demand can be obtained with deep neural-network optimization approaches that directly account for inventory dynamics in their optimization process. As such, our research opens up new ways of efficiently managing complex, high-dimensional inventory dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助布坎南采纳,获得10
刚刚
刚刚
中森菜龙完成签到,获得积分10
刚刚
彩色映雁发布了新的文献求助10
1秒前
317完成签到,获得积分10
3秒前
3秒前
希希完成签到 ,获得积分10
4秒前
Ava应助xixi采纳,获得10
5秒前
悄悄发布了新的文献求助30
5秒前
小韩完成签到,获得积分10
5秒前
8秒前
Krositon完成签到,获得积分20
10秒前
liwang发布了新的文献求助10
11秒前
田様应助昵称采纳,获得10
12秒前
菠萝吹雪应助舒适的秋尽采纳,获得30
12秒前
搜集达人应助高兴紫寒采纳,获得10
13秒前
彩色草莓发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
可爱的函函应助木子李采纳,获得10
18秒前
18秒前
Ava应助嘿嘿采纳,获得10
18秒前
侏罗纪世界完成签到,获得积分10
19秒前
布坎南发布了新的文献求助10
20秒前
墨点完成签到 ,获得积分10
21秒前
22秒前
小绵羊发布了新的文献求助10
22秒前
魔幻海豚发布了新的文献求助10
22秒前
MeSs完成签到 ,获得积分10
22秒前
23秒前
kang12完成签到,获得积分10
23秒前
23秒前
24秒前
彩色草莓完成签到,获得积分10
26秒前
阿力发布了新的文献求助10
27秒前
28秒前
研友_ZbM2qn发布了新的文献求助10
29秒前
科目三应助赵云采纳,获得10
29秒前
YING发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412654
求助须知:如何正确求助?哪些是违规求助? 3015273
关于积分的说明 8869601
捐赠科研通 2703053
什么是DOI,文献DOI怎么找? 1482000
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679771