Prognosis Forecast of Re-Irradiation for Recurrent Nasopharyngeal Carcinoma Based on Deep Learning Multi-Modal Information Fusion

人工智能 计算机科学 鼻咽癌 情态动词 机器学习 深度学习 一致性(知识库) 任务(项目管理) 监督学习 传感器融合 模式识别(心理学) 放射治疗 人工神经网络 医学 放射科 工程类 化学 高分子化学 系统工程
作者
Shanfu Lu,Xiang Xiao,Ziye Yan,Tingting Cheng,Xufang Tan,Rongchang Zhao,Haijun Wu,Liangfang Shen,Zijian Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6088-6099 被引量:5
标识
DOI:10.1109/jbhi.2023.3286656
摘要

Radiation therapy is the primary treatment for recurrent nasopharyngeal carcinoma. However, it may induce necrosis of the nasopharynx, leading to severe complications such as bleeding and headache. Therefore, forecasting necrosis of the nasopharynx and initiating timely clinical intervention has important implications for reducing complications caused by re-irradiation. This research informs clinical decision-making by making predictions on re-irradiation of recurrent nasopharyngeal carcinoma using deep learning multi-modal information fusion between multi-sequence nuclear magnetic resonance imaging and plan dose. Specifically, we assume that the hidden variables of model data can be divided into two categories: task-consistency and task-inconsistency. The task-consistency variables are characteristic variables contributing to target tasks, while the task-inconsistency variables are not apparently helpful. These modal characteristics are adaptively fused when the relevant tasks are expressed through the construction of supervised classification loss and self-supervised reconstruction loss. The cooperation of supervised classification loss and self-supervised reconstruction loss simultaneously reserves the information of characteristic space and controls potential interference simultaneously. Finally, multi-modal fusion effectively fuses information through an adaptive linking module. We evaluated this method on a multi-center dataset. and found the prediction based on multi-modal features fusion outperformed predictions based on single-modal, partial modal fusion or traditional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一减完成签到 ,获得积分10
1秒前
wang完成签到,获得积分10
2秒前
邪恶西瓜皮完成签到,获得积分10
2秒前
2秒前
2秒前
小马甲应助whisper采纳,获得30
2秒前
白泽发布了新的文献求助10
2秒前
3秒前
3秒前
蛋妞发布了新的文献求助10
3秒前
嘟嘟发布了新的文献求助10
3秒前
可可完成签到,获得积分10
4秒前
4秒前
4秒前
自然月亮发布了新的文献求助10
5秒前
6秒前
完美世界应助顺利的慕儿采纳,获得10
6秒前
6秒前
6秒前
科研通AI5应助屈春洋采纳,获得10
6秒前
热心又蓝完成签到,获得积分10
7秒前
李龙发布了新的文献求助10
7秒前
7秒前
7秒前
粗心的半鬼完成签到,获得积分10
7秒前
8秒前
8秒前
pw完成签到,获得积分10
8秒前
8秒前
9秒前
情怀应助次次实验次次成采纳,获得10
9秒前
奇博士发布了新的文献求助10
9秒前
在水一方应助山与采纳,获得10
9秒前
9秒前
月落无痕2025完成签到,获得积分10
9秒前
wang发布了新的文献求助10
10秒前
DDD发布了新的文献求助10
10秒前
10秒前
科研通AI5应助laojian采纳,获得10
10秒前
小jia发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071167
求助须知:如何正确求助?哪些是违规求助? 4292013
关于积分的说明 13372748
捐赠科研通 4112513
什么是DOI,文献DOI怎么找? 2252022
邀请新用户注册赠送积分活动 1257123
关于科研通互助平台的介绍 1189843