Prognosis Forecast of Re-Irradiation for Recurrent Nasopharyngeal Carcinoma Based on Deep Learning Multi-Modal Information Fusion

人工智能 计算机科学 鼻咽癌 情态动词 机器学习 深度学习 一致性(知识库) 任务(项目管理) 监督学习 传感器融合 模式识别(心理学) 放射治疗 人工神经网络 医学 放射科 工程类 化学 系统工程 高分子化学
作者
Shanfu Lu,Xiang Xiao,Ziye Yan,Tingting Cheng,X. Tan,Rongchang Zhao,Haijun Wu,Liangfang Shen,Zijian Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6088-6099 被引量:2
标识
DOI:10.1109/jbhi.2023.3286656
摘要

Radiation therapy is the primary treatment for recurrent nasopharyngeal carcinoma. However, it may induce necrosis of the nasopharynx, leading to severe complications such as bleeding and headache. Therefore, forecasting necrosis of the nasopharynx and initiating timely clinical intervention has important implications for reducing complications caused by re-irradiation. This research informs clinical decision-making by making predictions on re-irradiation of recurrent nasopharyngeal carcinoma using deep learning multi-modal information fusion between multi-sequence nuclear magnetic resonance imaging and plan dose. Specifically, we assume that the hidden variables of model data can be divided into two categories: task-consistency and task-inconsistency. The task-consistency variables are characteristic variables contributing to target tasks, while the task-inconsistency variables are not apparently helpful. These modal characteristics are adaptively fused when the relevant tasks are expressed through the construction of supervised classification loss and self-supervised reconstruction loss. The cooperation of supervised classification loss and self-supervised reconstruction loss simultaneously reserves the information of characteristic space and controls potential interference simultaneously. Finally, multi-modal fusion effectively fuses information through an adaptive linking module. We evaluated this method on a multi-center dataset. and found the prediction based on multi-modal features fusion outperformed predictions based on single-modal, partial modal fusion or traditional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助asd采纳,获得10
1秒前
恭喜发布了新的文献求助10
4秒前
科研通AI2S应助lxcy0612采纳,获得10
4秒前
落后蓝天完成签到 ,获得积分10
5秒前
FashionBoy应助tingting采纳,获得10
5秒前
8秒前
8秒前
8秒前
DK关注了科研通微信公众号
8秒前
向阳花完成签到,获得积分10
9秒前
纯情的远山完成签到,获得积分10
10秒前
寒冷寻桃完成签到 ,获得积分10
11秒前
上官老黑完成签到 ,获得积分10
11秒前
12秒前
华仔应助嗨哈尼采纳,获得10
12秒前
12秒前
打打应助恭喜采纳,获得10
13秒前
ccc发布了新的文献求助10
13秒前
一所悬命发布了新的文献求助10
13秒前
倦梦还发布了新的文献求助10
14秒前
14秒前
傻傻的宛白完成签到,获得积分10
14秒前
15秒前
Yeongmantou发布了新的文献求助10
15秒前
华仔应助火星上惜蕊采纳,获得10
16秒前
鱼子发布了新的文献求助10
17秒前
18秒前
18秒前
Glow发布了新的文献求助10
19秒前
19秒前
TTKX完成签到,获得积分10
20秒前
清秀的惜萱完成签到,获得积分20
20秒前
20秒前
初夏完成签到,获得积分10
20秒前
暮寻屿苗完成签到 ,获得积分10
21秒前
nj发布了新的文献求助10
21秒前
wangayting发布了新的文献求助50
21秒前
23秒前
叮叮完成签到 ,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096