Graph-DTI: A New Model for Drug–Target Interaction Prediction Based on Heterogenous Network Graph Embedding

药物数据库 计算机科学 交互网络 图形 异构网络 图嵌入 机器学习 注意力网络 人工智能 分类器(UML) 化学信息学 数据挖掘 理论计算机科学 生物信息学 药品 医学 电信 生物化学 化学 无线网络 精神科 无线 基因 生物
作者
Yongming Cai,Xiaohan Qu,Guoxia Du,Jing Hu
出处
期刊:Current Computer - Aided Drug Design [Bentham Science]
卷期号:19
标识
DOI:10.2174/1573409919666230713142255
摘要

In this study, we aimed to develop a new end-to-end learning model called Graph-Drug-Target Interaction (DTI), which integrates various types of information in the heterogeneous network data, and to explore automatic learning of the topology-maintaining representations of drugs and targets, thereby effectively contributing to the prediction of DTI. Precise predictions of DTI can guide drug discovery and development. Most machine learning algorithms integrate multiple data sources and combine them with common embedding methods. However, the relationship between the drugs and target proteins is not well reported. Although some existing studies have used heterogeneous network graphs for DTI prediction, there are many limitations in the neighborhood information between the nodes in the heterogeneous network graphs. We studied the drug-drug interaction (DDI) and DTI from DrugBank Version 3.0, protein-protein interaction (PPI) from the human protein reference database Release 9, drug structure similarity from Morgan fingerprints of radius 2 and calculated by RDKit, and protein sequence similarity from Smith-Waterman score.Our study consists of three major components. First, various drugs and target proteins were integrated, and a heterogeneous network was established based on a series of data sets. Second, the graph neural networks-inspired graph auto-encoding method was used to extract high-order structural information from the heterogeneous networks, thereby revealing the description of nodes (drugs and proteins) and their topological neighbors. Finally, potential DTI prediction was made, and the obtained samples were sent to the classifier for secondary classification.The performance of Graph-DTI and all baseline methods was evaluated using the sums of the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC). The results indicated that Graph-DTI outperformed the baseline methods in both performance results.Compared with other baseline DTI prediction methods, the results showed that Graph-DTI had better prediction performance. Additionally, in this study, we effectively classified drugs corresponding to different targets and vice versa. The above findings showed that Graph-DTI provided a powerful tool for drug research, development, and repositioning. Graph-DTI can serve as a drug development and repositioning tool more effectively than previous studies that did not use heterogeneous network graph embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的初露完成签到,获得积分10
刚刚
1秒前
1秒前
桃桃完成签到,获得积分10
1秒前
zx发布了新的文献求助20
2秒前
Renee应助苏楠采纳,获得10
3秒前
香蕉觅云应助yy采纳,获得10
3秒前
浮生发布了新的文献求助10
3秒前
零花钱发布了新的文献求助10
5秒前
5秒前
鱼莉完成签到,获得积分10
5秒前
6秒前
丘比特应助lynne采纳,获得10
7秒前
10秒前
10秒前
Dr.Liu完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
15秒前
Jenny发布了新的文献求助10
15秒前
1238125446发布了新的文献求助20
16秒前
无我发布了新的文献求助10
16秒前
深情安青应助Mira采纳,获得30
18秒前
顺心子轩完成签到,获得积分10
18秒前
18秒前
山色青完成签到,获得积分10
20秒前
正在加载发布了新的文献求助10
20秒前
老王完成签到,获得积分10
22秒前
值班室禁止学习完成签到,获得积分10
23秒前
Jasper应助是小袁呀采纳,获得10
23秒前
fbtj完成签到,获得积分10
24秒前
24秒前
Akim应助AREA4采纳,获得10
24秒前
24秒前
24秒前
敬老院N号举报木木啊求助涉嫌违规
25秒前
25秒前
浮生发布了新的文献求助10
25秒前
5555发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053