Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 基因 化学
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助无风风采纳,获得10
刚刚
gyusbjshaxb完成签到,获得积分10
1秒前
科研通AI6应助大力惜海采纳,获得10
1秒前
shuide完成签到,获得积分20
2秒前
2秒前
ghkjl发布了新的文献求助10
3秒前
葡萄完成签到 ,获得积分10
3秒前
LH发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
東東发布了新的文献求助10
4秒前
4秒前
花椒香菜发布了新的文献求助10
5秒前
朴素的寒天完成签到,获得积分20
5秒前
wuyany33完成签到,获得积分10
5秒前
Liliz完成签到,获得积分10
5秒前
Zilong864完成签到,获得积分10
5秒前
CC发布了新的文献求助10
6秒前
6秒前
7秒前
华仔应助陆仓颉采纳,获得10
7秒前
米大王完成签到,获得积分10
7秒前
笑点低的白昼完成签到,获得积分10
7秒前
8秒前
rrtiamo发布了新的文献求助10
8秒前
六神曲完成签到,获得积分10
8秒前
南橘完成签到,获得积分10
8秒前
8秒前
9秒前
qq158014169发布了新的文献求助10
9秒前
田雪完成签到,获得积分10
9秒前
Owen应助liwenhao采纳,获得10
9秒前
彭于晏应助小林要发sci采纳,获得10
10秒前
chen发布了新的文献求助10
10秒前
10秒前
Ryan123完成签到,获得积分10
10秒前
11秒前
whisper发布了新的文献求助10
11秒前
zyyyyyyyy完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676