Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 化学 基因
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的安蕾完成签到 ,获得积分10
刚刚
刚刚
笨鸟先飞完成签到 ,获得积分10
1秒前
1秒前
1秒前
旺仔先生完成签到,获得积分0
1秒前
7尔阿婆完成签到,获得积分10
1秒前
2秒前
2秒前
zhi完成签到,获得积分10
2秒前
guoguo完成签到,获得积分20
2秒前
深情安青应助坚定自信采纳,获得10
2秒前
yuan1226完成签到,获得积分10
3秒前
学习学个P发布了新的文献求助30
3秒前
顾矜应助Re采纳,获得10
4秒前
王小冉发布了新的文献求助10
4秒前
依然完成签到,获得积分10
4秒前
4秒前
5秒前
000发布了新的文献求助10
5秒前
bluesky发布了新的文献求助10
5秒前
孙朱珠发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
隐形曼青应助爱听歌时光采纳,获得10
6秒前
桃李不言完成签到,获得积分10
6秒前
6秒前
7秒前
张琳完成签到,获得积分10
8秒前
8秒前
guoguo发布了新的文献求助10
8秒前
9秒前
灵巧的雁易完成签到,获得积分10
9秒前
badercao完成签到,获得积分10
9秒前
Wuwuwu发布了新的文献求助10
9秒前
Re完成签到,获得积分10
9秒前
9秒前
老鱼娜娜完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572