Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 化学 基因
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siver完成签到 ,获得积分10
刚刚
淡定完成签到,获得积分10
刚刚
1秒前
敏敏9813完成签到,获得积分10
1秒前
1秒前
LiuZhe发布了新的文献求助10
2秒前
甄遥完成签到,获得积分10
2秒前
谢同学发布了新的文献求助10
2秒前
搜集达人应助等待黎明采纳,获得10
3秒前
周易完成签到,获得积分10
3秒前
mavis发布了新的文献求助10
3秒前
一灯大师发布了新的文献求助10
3秒前
专注的问寒应助K.Cui采纳,获得10
4秒前
淡定发布了新的文献求助10
4秒前
arT完成签到,获得积分10
4秒前
今后应助WWZ采纳,获得10
6秒前
6秒前
Teletubbies应助Frank采纳,获得30
6秒前
ZHDNCG完成签到,获得积分10
6秒前
6秒前
Vyasa完成签到,获得积分10
6秒前
小马甲应助大气靳采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
小蘑菇应助黄伟凯采纳,获得10
8秒前
L~完成签到,获得积分10
9秒前
cc举报wenzi96求助涉嫌违规
9秒前
ChiariRay完成签到,获得积分10
10秒前
Forever完成签到 ,获得积分10
10秒前
10秒前
光亮亦竹完成签到 ,获得积分10
12秒前
12秒前
Shumaila发布了新的文献求助10
12秒前
13秒前
13秒前
魔幻灵煌发布了新的文献求助10
14秒前
Lucas应助淡定采纳,获得10
14秒前
yyds发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425