Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 化学 基因
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的企鹅完成签到,获得积分10
刚刚
南夏完成签到,获得积分10
1秒前
2秒前
2秒前
迅速西装发布了新的文献求助20
3秒前
3秒前
JPH1990完成签到,获得积分10
3秒前
可爱的函函应助enchanted采纳,获得10
3秒前
3秒前
8R60d8应助憔悴的坦克采纳,获得10
5秒前
6秒前
6秒前
苗雪阳完成签到,获得积分20
7秒前
Driscoll完成签到 ,获得积分10
7秒前
letter发布了新的文献求助10
7秒前
7秒前
科研通AI5应助阿斯蒂芬采纳,获得10
7秒前
无奈的背包完成签到 ,获得积分10
8秒前
桐桐应助lc采纳,获得10
8秒前
一见喜发布了新的文献求助10
9秒前
bkagyin应助小半个菠萝采纳,获得10
9秒前
10秒前
肖鹏发布了新的文献求助10
11秒前
12秒前
ABC发布了新的文献求助10
12秒前
青栀发布了新的文献求助10
12秒前
汉堡包应助可可采纳,获得10
13秒前
大模型应助苗条的小蜜蜂采纳,获得10
13秒前
长乐杨完成签到 ,获得积分20
14秒前
ding应助kkkkkoi采纳,获得10
14秒前
15秒前
新柳发布了新的文献求助10
16秒前
共享精神应助等人的咖啡采纳,获得10
16秒前
18秒前
幸福大白发布了新的文献求助10
18秒前
18秒前
zll完成签到 ,获得积分20
19秒前
CodeCraft应助Gang采纳,获得10
19秒前
不配.应助yu采纳,获得30
19秒前
19秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547326
求助须知:如何正确求助?哪些是违规求助? 3978277
关于积分的说明 12318591
捐赠科研通 3646879
什么是DOI,文献DOI怎么找? 2008395
邀请新用户注册赠送积分活动 1043972
科研通“疑难数据库(出版商)”最低求助积分说明 932554