Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 化学 基因
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啦啦啦啦德玛西亚完成签到,获得积分10
1秒前
天大地大大哥最大完成签到,获得积分10
1秒前
李爱国应助CS391495876采纳,获得10
2秒前
爱笑以松完成签到,获得积分10
2秒前
科云川发布了新的文献求助10
2秒前
胡周周睡不醒关注了科研通微信公众号
2秒前
wanci应助猷鲛采纳,获得10
3秒前
zzz发布了新的文献求助10
3秒前
香蕉觅云应助张亦芊如采纳,获得10
3秒前
田様应助啥文献找不到采纳,获得10
3秒前
厦屿完成签到,获得积分20
4秒前
zxf完成签到 ,获得积分10
4秒前
tingz发布了新的文献求助10
5秒前
zyq完成签到,获得积分10
6秒前
吴海辉发布了新的文献求助10
6秒前
能干的诗筠完成签到 ,获得积分10
7秒前
听毛细胞Hey完成签到,获得积分20
7秒前
李爱国应助NYM采纳,获得10
7秒前
7秒前
云瑾应助刘家翔采纳,获得10
7秒前
华仔应助cloudy90采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
ding应助月亮明星采纳,获得10
11秒前
思源应助秀丽的大门采纳,获得10
11秒前
健壮的如松完成签到,获得积分10
11秒前
bb完成签到,获得积分10
11秒前
lxr8900发布了新的文献求助10
11秒前
iNk应助crispshu采纳,获得10
12秒前
12秒前
小二郎应助爱笑以松采纳,获得10
13秒前
13秒前
正直念柏发布了新的文献求助10
13秒前
都市丽人完成签到,获得积分10
13秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468985
求助须知:如何正确求助?哪些是违规求助? 3062016
关于积分的说明 9077763
捐赠科研通 2752446
什么是DOI,文献DOI怎么找? 1510421
科研通“疑难数据库(出版商)”最低求助积分说明 697807
邀请新用户注册赠送积分活动 697759