清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 基因 化学
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sswy完成签到 ,获得积分10
22秒前
眼中星光完成签到,获得积分10
30秒前
激动的似狮完成签到,获得积分10
38秒前
慕青应助十三采纳,获得10
1分钟前
QCB完成签到 ,获得积分10
1分钟前
在水一方应助Claudia采纳,获得10
1分钟前
千里草完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
2分钟前
Claudia发布了新的文献求助10
2分钟前
VDC发布了新的文献求助10
2分钟前
VDC发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
VDC发布了新的文献求助10
3分钟前
4分钟前
kaiii发布了新的文献求助10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
Mercury完成签到,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
5分钟前
LYNN完成签到,获得积分10
5分钟前
Setlla完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
酷波er应助kouun采纳,获得10
7分钟前
Hiram完成签到,获得积分10
7分钟前
隐形曼青应助tttt采纳,获得10
7分钟前
TXX完成签到,获得积分10
7分钟前
TXX发布了新的文献求助10
7分钟前
Dr空瓶氧气完成签到,获得积分10
7分钟前
落落完成签到 ,获得积分0
8分钟前
酷波er应助科研通管家采纳,获得10
8分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
9分钟前
9分钟前
Noah完成签到 ,获得积分0
9分钟前
十三发布了新的文献求助10
9分钟前
9分钟前
勤恳依霜发布了新的文献求助10
9分钟前
勤恳依霜完成签到,获得积分20
9分钟前
深情安青应助勤恳依霜采纳,获得10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880548
求助须知:如何正确求助?哪些是违规求助? 4167077
关于积分的说明 12927528
捐赠科研通 3926030
什么是DOI,文献DOI怎么找? 2154982
邀请新用户注册赠送积分活动 1173121
关于科研通互助平台的介绍 1077572