Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical Image Segmentation

计算机科学 分割 人工智能 稳健性(进化) 机器学习 图像分割 计算机视觉 模式识别(心理学) 生物化学 基因 化学
作者
An Wang,Mobarakol Islam,Mengya Xu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4340-4352 被引量:4
标识
DOI:10.1109/tase.2023.3295600
摘要

Accurate and robust medical image segmentation is fundamental and crucial for enhancing the autonomy of computer-aided diagnosis and intervention systems. Medical data collection normally involves different scanners, protocols, and populations, making domain adaptation (DA) a highly demanding research field to alleviate model degradation in the deployment site. To preserve the model performance across multiple testing domains, this work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation. In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift in the deployment phase, where the higher the shift is, the harder to recognize the variance. Considering this, we progressively introduce more amplitude information from the target domain to the source domain in the frequency space during the curriculum-style training to smoothly schedule the semantic knowledge transfer in an easier-to-harder manner. Besides, we incorporate the training-time chained augmentation mixing to help expand the data distributions while preserving the domain-invariant semantics, which is beneficial for the acquired model to be more robust and generalize better to unseen domains. Extensive experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance. Meanwhile, our approach proves to be more robust under various corruption types and increasing severity levels. In addition, we show our method is also beneficial in the domain-adaptive classification task with skin lesion datasets. The code is available at https://github.com/lofrienger/Curri-AFDA. Note to Practitioners —Medical image segmentation is key to improving computer-assisted diagnosis and intervention autonomy. However, due to domain gaps between different medical sites, deep learning-based segmentation models frequently encounter performance degradation when deployed in a novel domain. Moreover, model robustness is also highly expected to mitigate the effects of data corruption. Considering all these demanding yet practical needs to automate medical applications and benefit healthcare, we propose the Curriculum-based Fourier Domain Adaptation (Curri-AFDA) for medical image segmentation. Extensive experiments on two segmentation tasks with cross-domain datasets show the consistent superiority of our method regarding adaptation and generalization on multiple testing domains and robustness against synthetic corrupted data. Besides, our approach is independent of image modalities because its efficacy does not rely on modality-specific characteristics. In addition, we demonstrate the benefit of our method for image classification besides segmentation in the ablation study. Therefore, our method can potentially be applied in many medical applications and yield improved performance. Future works may be extended by exploring the integration of curriculum learning regime with Fourier domain amplitude fusion in the testing time rather than in the training time like this work and most other existing domain adaptation works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江筱筱完成签到,获得积分10
1秒前
丁一完成签到,获得积分10
1秒前
小刘刘完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
动听饼干发布了新的文献求助10
2秒前
zkqzzz完成签到 ,获得积分10
2秒前
2秒前
Stella应助爱科研大老曹采纳,获得10
2秒前
2秒前
曾无忧发布了新的文献求助10
3秒前
星辰大海应助池鱼思故渊采纳,获得30
3秒前
一刀完成签到,获得积分10
4秒前
Stella应助GC采纳,获得10
4秒前
迅速的易巧完成签到 ,获得积分10
5秒前
5秒前
5秒前
大胆的忆寒完成签到,获得积分10
5秒前
如常发布了新的文献求助10
5秒前
充电宝应助Rr采纳,获得10
5秒前
cyuan发布了新的文献求助10
5秒前
欣喜谷槐完成签到,获得积分10
5秒前
ccepted1122给ccepted1122的求助进行了留言
6秒前
6秒前
6秒前
啊炜发布了新的文献求助200
6秒前
董卓小蛮腰完成签到,获得积分10
6秒前
wwwww完成签到,获得积分10
7秒前
7秒前
mk发布了新的文献求助10
7秒前
7秒前
0range完成签到,获得积分10
7秒前
知秋发布了新的文献求助10
7秒前
mmmm完成签到,获得积分10
8秒前
GuanguanYaa发布了新的文献求助10
8秒前
hsy309完成签到,获得积分10
8秒前
NN发布了新的文献求助30
9秒前
嘲鸫完成签到,获得积分10
9秒前
刘胖胖发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017